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A B S T R A C T   

Bladder urothelial carcinoma (BLCA) is a complex disease with high morbidity and mortality. Changes in 
alternative splicing (AS) and splicing factor (SF) can affect gene expression, thus playing an essential role in 
tumorigenesis. This study downloaded 412 patients’ clinical information and 433 samples of transcriptome 
profiling data from TCGA. And we collected 48 AS signatures from SpliceSeq. LASSO and Cox analyses were used 
for identifying survival-related AS events in BLCA. Finally, 1,645 OS-related AS events in 1,129 genes were 
validated by Kaplan-Meier (KM) survival analysis, ROC analysis, risk curve analysis, and independent prognostic 
analysis. Finally, our survey provides an AS-SF regulation network consisting of five SFs and 46 AS events. In the 
end, we profiled genes that AS occurred in pan-cancer and five SFs’ expression in tumor and normal samples in 
BLCA. We selected CLIP-seq data for validation the interaction regulated by RBP. Our study paves the way for 
potential therapeutic targets of BLCA.   

1. Introduction 

Bladder cancer is one of the top ten common cancers in China (Li 
et al., 2021). It has become one of the important disease burdens in our 
country due to its easy recurrence, easy metastasis, and limited treat-
ment options. It seriously threatens the survival time and quality of life 
of patients. Urothelial carcinoma (UC) is common bladder cancer, ac-
counting for more than 90% of all bladder cancer cases (Magi-Galluzzi 

et al., 2008). Urothelial cancer is further divided into bladder urothelial 
carcinoma (BLCA) and upper tract urothelial cancer, of which BLCA 
accounts for more than 90% of all bladder cancer cases (Magi-Galluzzi 
et al., 2008; Parker and Spiess, 2011). Currently, chemotherapy is still 
the main treatment for recurrent and metastatic urothelial carcinoma, 
but the efficacy is limited. In recent years, immunotherapy represented 
by PD-1/PD-L1 inhibitors has brought new therapeutic opportunities for 
patients (Stenehjem et al., 2018). The onset of urothelial carcinoma is 
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insidious, and most patients are clinically advanced at the time of 
diagnosis. Platinum-based combined chemotherapy is the first-line 
standard treatment for advanced urothelial carcinoma, but the efficacy 
of chemotherapy is limited (Gómez De Liaño and Duran, 2018; Hanna, 
2017). Thus, it is vital for us to identify biomarkers for diagnosing and 
treating BLCA. 

AS, also known as differential splicing, refers to the fact that in the 
process of mRNA precursor to mature mRNA, different splicing methods 
allow the same gene to produce multiple different mature mRNAs, and 
ultimately produce different proteins (Lee and Rio, 2015; Montes et al., 
2019). AS is an important mechanism for regulating gene expression and 
generating proteome diversity, and it is an important reason for the large 
differences in the number of eukaryotic genes and proteins (Black, 2003; 
Sciarrillo et al., 2020). AS frequently occurs in tumors and is closely 
related to tumor development. The study found that AS affects those 
protein gene families that are frequently mutated in tumors and alters 
protein–protein interactions in tumor-related signaling pathways, indi-
cating that AS is also an important factor driving tumorigenesis (Black 
et al. 2019). For example, Paik et al. reported that oncogenic mutations 
in the proto-oncogene named MET can lead to exon 14 skip in lung 
cancer by nCounter Analysis System platform (Paik et al., 2015). Huang 
et al. suggested that PCBP1 regulates the splicing of APOC1 and SPHK1 
in hepatocellular carcinoma (HCC) by combining RNA-seq and eCLIP- 
seq data (S. Huang et al., 2021). However, few studies have systemati-
cally and comprehensively identified AS events associated with BLCA 
diagnosis and prognosis. 

SFs are a class of protein factors involved in the splicing process of 
RNA precursors (Du et al., 2021). According to their functional roles, 
they can be divided into small nuclear ribonucleoprotein particle 
(snRNP) protein factors and non-snRNP protein factors (Gonçalves et al., 
2017). Aberrant expression of SF can lead to altered AS of genes. In 
tumors, aberrant expression of SF may lead to the formation of specific 
cancer-promoting splicing isoforms, leading to cancer development 
(Koedoot et al., 2019). For instance, the intracellular protein T-cell 
Intracellular Antigen (TIA1) regulates VEGF isoform expression, angio-
genesis, tumor growth, and bevacizumab resistance in colon cancer 
(Hamdollah Zadeh et al., 2015). 

In this study, SF expression RNA-seq data and BLCA patient clinical 
data were downloaded from the TCGA database. AS events in BLCA and 
SFs information were collected from TCGA-SpliceSeq and SpliceAid 2 
webserver, respectively. LASSO regression and Cox model were applied 
for inferring prognostic-associated AS events in BLCA. And these AS 
events were evaluated by KM survival analysis, ROC curve, risk curve, 
and independent prognostic analysis. Further, we combined SF expres-
sion levels data with AS events for building AS-SF regulatory network. 
And TIA1 CLIP-seq data was used for validation. Finally, we compre-
hensively and systematically identified five SFs and 46 AS events. 

2. Materials and methods 

2.1. SF expression data and clinical data collection and pre-processing 

The BLCA RNA-seq dataset (level 3) and clinical information were 
downloaded and integrated via the TCGAbiolinks R package (version: 
2.22.4) (Colaprico et al., 2016; Mounir et al., 2019) from the TCGA data 
portal. 

For obtained gene expression data, clusterProfiler R package 
(version: 4.0.2) (Wu et al., 2021; Yu et al., 2012)was utilized for gene 
symbol annotation (from Ensembl ID to official gene symbol). SpliceAid 
2 webserver (https://www.introni.it/spliceaid.html) (Piva et al., 2012) 
was used for exporting SF genes. 

2.2. AS events data collection and pre-processing 

The AS events of BLCA were downloaded from TCGA SpliceSeq 
(https://bioinformatics.mdanderson.org/public-software/tcgasplicese 

q/) (Ryan et al., 2016) database, which is a tool for investigating 
alternative mRNA splicing in TCGA tumor and adjacent normal samples. 
Perform comparative analysis by producing splice graphs annotated 
with reading totals and percent spliced in (PSI) values for all potential 
splice events. 

To generate as reliable a set of AS events as possible, we imple-
mented a series of stringent filters: 1. Standard deviation (SD) filter: If 
the SD value of AS event is less than 0.1, then we remove the AS event. 
The standard deviation of an AS event in all samples is small, indicating 
that its fluctuation range is small, proving that this AS event has almost 
no effect on the patient survival time. 2. Data filtering: If the PSI value of 
an AS event is missing in more than 25% of the samples, then we remove 
the AS event. 3. Missing value imputation: fill missing PSI values (NA) 
with 0. 

2.3. The performance of prognostic signatures 

The survival R package (version: 3.2.13) was used to perform uni-
variate Cox regression and LASSO logistic regression for screening the 
OS-associated AS events as prognostic signatures. The hazard ratio (HR) 
value was used for evaluating the relationship between the PSI value of 
an AS event and the risk of a patient. HR larger than one demonstrates 
this AS event is a risk AS event; that is, the large PSI value the high risk of 
the patient. While HR less than one demonstrates this AS event isn’t a 
risk AS event, the larger PSI value the low risk of the patient. Finally, we 
selected the risk AS events based on the p-value < 0.05. For removing 
genes with high correlation and preventing overfitting of the model, we 
added lambda coefficient to LASSO regression and deleted genes with 
high correlation. 

These AS events were included in the multivariate Cox regression 
model to construct the independent prognosis signature for BLCA. The 
risk score of each selected OS-related AS event was determined by the 
following formula: 

risk score (AS event) =
∑n

i
PSIi × iβ 

Here, β represents the regression coefficient of multivariate Cox 
regression. Once we got the risk score of each patient, we can calculate 
the median risk score value of all patients. All patients were divided into 
two groups: the high-risk patient group (risk score > median value) and 
the low-risk patient group (risk score < median value). The p-value <
0.05 and AUC > 0.65 were set for evaluating model performance. 

2.4. The construction of the SF-AS regulatory network 

The Pearson correlation analysis between the expression level of SF 
and the PSI value of AS event was performed for constructing the SP-AS 
regulatory relationship network. The cor.test() function in R program 
(version: 4.1.2) was used for getting the Pearson correlation coefficient 
(PCC) value and p-value. The Pearson correlation coefficient PCC value 
0.6 and p-value 0.001 were set to the cutoff values to correlation and 
significance. In the end, the Cytoscape (version: 3.9.0) was utilized for 
visualizing and layout SF-AS regulatory network. 

2.5. The validation of SF regulation and PPI interaction 

In order to explore the regulation relationship between RBP and 
RNA, we downloaded the processed TIA1 CLIP-seq data from NCBI GEO 
via the accession number GSE94369 (three replicate samples: 
GSM2474165, GSM2474166, and GSM2474167). The mouse reference 
genome version is mm9. IGV software (version: 2.11.6) (Robinson et al., 
2011) was used for visualizing the binding between RBP TIA1 and RNA 
SRSF7. 
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3. Results 

3.1. AS events profile in BLCA 

The flowchart of our research is illustrated in Supplementary Fig. 1. 
There are 433 patient samples with the transcriptome profiling FPKM 
values. And there are 412 patient samples with the clinical information 
(Supplementary Table 1). In summary, 56,602 Ensembl IDs are con-
verted to 12,293 official gene symbols. Forty-eight out of 67 SF genes are 
selected as SF genes (Supplementary Table 2). 

Here, we focus on the seven different types of AS events (Lee and Rio, 
2015; Montes et al., 2019): exon skip (ES), mutually exclusive exons 
(ME), alternative promoter (AP), retained intron (RI), alternative 
terminator (AT), alternative donor site (AD), and alternative acceptor 
site (AA). The schematic diagram of the above seven types is plotted in 
Fig. 1A. In total, there are 10,434 different AS events in 4,659 genes. We 
detected 3,173 ESs in 1,163 genes, 3,009 APs in 880 genes, 1,934 ATs in 
704 genes, 908 RIs in 302 genes, 668 AAs in 205 genes, 690 ADs in 199 
genes, and 52 MEs in 14 genes (Fig. 1B). It shows that one gene might 
have two kinds of AS types on average (10434/4659). This result 
demonstrated that gene expression is diverse because of different AS 
types. ES is the dominant AS type among them, accounting for more than 
30% of all AS events (3173/10434), which is consistent with the re-
ported results (Bonnal et al., 2020). 

3.2. Identification of prognosis-related AS events in BLCA 

The Cox regression was used for identifying OS-related AS events. We 
defined prognosis-related AS events as the p-value < 0.05 and |HR|>1 
(Fig. 2A). 

In total, there are 1,645 OS-related AS events in 1,129 genes. We 
detected 418 ESs in 330 genes, 556 APs in 368 genes, 351 ATs in 201 
genes, 154 RIs in 119 genes, 80 AAs in 53 genes, 77 ADs in 51 genes, and 

9 MEs in 7 genes (Fig. 2B). 
Then, we selected the top 20 prognosis-associated AS events in ES, 

ME, AP, AT, AD, AA, and RI (Fig. 3A-3G). These results show that only 
about eleven percent of AS events are significantly associated with the 
prognosis of BLCA (1129/10434). 

3.3. The prognostic value BLCA-related AS events 

We got the top 20 prognosis-related AS events for each AS type in 
BLCA. We didn’t select and remove genes with a high correlation in this 
process. So, we performed LASSO regression analysis to avoid model 
overfitting problems (Supplementary Fig. 2). 

After the LASSO analysis, we obtained ten AS events in ES type, six 
AS events in AA type, nine AS events in AD type, seven AS events in AP 
type, six AS events in AT type, six AS events in RI event, and five AS 
events in ME type. Fig. 4 and Supplementary Figs. 3-8 showed the risk 
curves, survival status, and risk heatmap. We split all patients into two 
equal numbers of groups: high-risk and low-risk groups according to the 
risk score value. If the risk score is larger than the median value of all 
risk score values, the patient is classified into the high-risk group. At the 
same time, the patient is classified into a low-risk group when its risk 
score is less than the median value of all risk score values. In the survival 
status Fig. 4B, we concluded that the death rate of patients increased as 
the large the risk score was. We identified high-risk AS events and low- 
risk AS events based on the color change from left to right in the heat-
map. If the color is black to green, the AS event is a low-risk AS event. In 
contrast, the AS event is a high-risk AS event if the color is green to red. 
We also concluded them in Supplementary Table 1. 

3.4. Univariate and multivariate independent prognostic analysis 

In addition, an independent prognostic efficacy of the risk signatures 
in BLCA was performed for identifying independent prognostic factors. 

Fig. 1. The overview of AS events in BLCA. (A) The diagram of seven classic AS event models, including exon skip (ES), mutually exclusive exons (ME), alternative 
promoter (AP), retained intron (RI), alternative terminator (AT), alternative donor site (AD), and alternative acceptor site (AA). Exons are represented as red and blue 
blocks, introns as lines. (B) The Upset plot of the interactions how many genes are involved in each type of AS event in BLCA. For example, there are 203 genes 
involved in both ES and AP AS events. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Z. Liu et al.                                                                                                                                                                                                                                       
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We divided patients into different groups based on the clinical charac-
teristics: age, gender, disease stage, T (tumor), M (metastasis), and N 
(lymph node). The green forest plots of AA, AD, AP, AT, ES, RI, and ME 
suggested that age, gender, stage, T, N, and risk score are related to 
survival time and status. One of them can serve as an independent 
clinical characteristic by univariate independent prognostic analysis (p- 
value < 0.05, Supplementary Fig. 9A-9G). 

Besides, we put all factors into the comparison at one time. After the 
multivariate independent prognostic analysis, we concluded that risk 
score is an independent prognostic factor (Supplementary Fig. 10A- 
10G). 

Removing not significant factors and factors that can be instead, we 

identified an independent prognostic factor – risk score. 

3.5. The evaluation of AS models in BLCA 

In summary, prognostic-associated factors were obtained by uni-
variate factor analysis. Then, the independent factor was obtained by 
multivariate factor analysis. Collectively, we constructed a convenient 
model for the prognosis of BLCA patients by only using risk scores. The 
KM survival analysis of the final signature (risk score) indicated that 
there was a notable difference in survival times between high-risk group 
and low-risk group (p-value < 0.05). Fig. 5A-5G showed the survival 
analysis results of these ES, ME, AP, RI, AT, AD, and AA. 

Fig. 2. OS-related AS events in BLCA. (A) The volcano plot indicates the OS-related AS events. The red dots represent prognosis-related AS, while the blue dots 
represent no significant prognosis-related AS. The x-axis and y-axis are z-score and -log10(p-value) from univariate Cox analysis, respectively. (B) The Upset plot of 
the interactions how many genes are involved in each type of AS event related to OS. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Moreover, the ROC curve is also used for assessing the efficiency 
among AS models. The range of AUC is from 0.5 to 1. The AS models 
have high AUC values (Fig. 6). The ROC curve demonstrated that the ES, 
AD, and AA constructed AS prognostic models are the top three models. 
AS events selected have good performance. 

3.6. The construction of SF-AS regulatory network 

A SF is a kind of protein involved in removing introns from strings of 
messenger RNA, so that the exons can bind together; the process takes 
place in spliceosomes (Ule and Blencowe, 2019). SF is essential to 
determine cell type and cause disease by regulating AS events (Cieply 
and Carstens, n.d; Zhang et al., 2008). 

Pearson correlation analysis between the expression levels of SF and 
AS events was performed for selecting regulation pairs. After the 
filtering criteria: the |Pearson correlation coefficient (PCC) value| > 0.6 
and p-value < 0.001, SF-AS regulatory pairs were determined. Fig. 7 is 
the visualization of the SF-AS regulatory network. The network consists 
of five SFs and 46 AS events (12 up AS events and 34 down AS events). 
The AS-up indicates it’s a risk AS that is, the larger the PSI value of the 
AS with the high risk of the patient. The AS-down indicates it’s not a risk 
AS; that is, the larger the PSI value of the AS with the low risk of the 
patient. 

3.7. RBP regulation CLIP-seq data analysis 

As was shown in Fig. 7, HNRNPU down-regulated (green line) good 
prognosis-related AS events (green dots), TIA2A and TIA1 up-regulated 
(red line) bad prognosis-related ones (red dots), PCBP1 and RBM5 had 
various regulation functions. Supplementary Fig. 11 shows that two 
were significantly differentially expressed between tumor and adjacent 
normal BLCA samples with the p-value < 0.05: TRA2A and TIA1. At the 
same time, they were upregulated in tumor samples compared with 
normal samples. 

TCGA SpliceSeq was used for providing an overview of AS events 
that our interested in cancers (Ryan et al., 2016). Fig. 8A shows the PSI 
values of AS event in exon 4.2, exon 4.3, exon 4.4, and exon 4.5 of the 
SRSF7 gene that is regulated both by TRA2A and TIA1 across 33 different 
cancer types. SRSF7-53280-RI belongs to RI AS event that occurred in 
exon 4.2, 4.3, 4.4, and 4.5 from this splice graph. Cross-tumor box plots 
show PSI data from all TCGA samples for 33 different tumor types and 
when available adjacent normal samples. Vagner S et al. provided the 
three replicates peak files in mammary tumor cells for TIA1 CLIP-seq 

data in the mm9 version. We visualized the TIA1 CLIP-seq peaks into 
IGV genomic visualization tool in reference genome mm9. In mammary 
tumor cell of mouse, we concluded that TIA1 binding to SRSF7 (Fig. 8B). 

4. Discussion 

Bladder cancer is a common malignant tumor of the urinary system 
(Zhang et al., 2021). BLCA is the predominant histological type of 
bladder cancer, accounting for 90% of all bladder cancers (Zhang et al., 
2021). 

Currently, some technologies and methods have applied for identi-
fying biomarkers of BLCA. Long non-coding RNA (lncRNA), chromatin 
regulator (CR), protein-coding gene, microRNA (miRNA) can serve as 
the biomarker for predicting the prognosis of BLCA. In 2022, there is a 
study that found that TERC was significantly up regulated expressed in 
urinary exosomes from four BLCA patients compared with those from 
three healthy controls (Chen et al., 2022). And they summary that uri-
nary exosome TERC is a diagnostic and prognostic biomarker for BLCA 
(Chen et al., 2022). Zhu et al. constructed and validated an 11 CRs-based 
model for predicting the survival status of BLCA patients (Zhu et al., 
2022). Functional analysis suggested that these 11 CRs are related to 
immune checkpoint and immune cells infiltration (Zhu et al., 2022). And 
the eight small molecule drugs that sensitive to high-risk group were 
beneficial to treatment for BLCA (Zhu et al., 2022). HMMR was identi-
fied as a kind of protein coding gene of biomarker both in the expression 
level and in the independent prognostic level by Yang et al. (Yang et al., 
2019). According to the TCGA data, Peng et al. identified a three-miRNA 
signature as a novel potential prognostic biomarker in BLCA (Peng et al., 
2017). 

However, studies about BLCA-specific SF-regulated, survival-related 
AS events are exceedingly rare. Furthermore, the experimental valida-
tion for AS-SF regulation relationship is also rare. Here, we proposed a 
mature and systematic pipeline for identifying prognostic related AS 
event. It realized non-invasive detection of BLCA. 

In this study, we identified AS events and SF through computational 
biology methods from TCGA BLCA cohort data to explore the clinical 
significance of differential RNA splicing patterns. We detected 1,645 
differentials AS events in 1,129 genes using univariate Cox regression 
analysis (Fig. 2B). Supplementary Table 3 describes about half of AS 
events were favorable prognostic factors (20 AS events, HR < 1), and 
about half of AS events were adverse prognostic factors (29 AS events, 
HR > 1). Only six of the top 20 significant OS-related AS events were 
favorable prognostic factors, and the rest 14 AS events were adverse 

Fig. 3. The top 20 OS-related seven different kinds of AS events. (A) is for ES, (B) is for ME, (C) is for AP, (D) is for AT, (E) is for AD, (F) is for AS, and (G) is for RI. 
Note that: For the ME type, there are only nine (less than 20) significant AS events. 
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Fig. 4. The construction of prognostic models of ES type in 
BLCA. The x-axis is the patient sorted by the risk. (A) The y- 
axis is the risk score. The red dot indicates the risk score for 
high-risk patients (risk score > 1), while the green dot in-
dicates the risk score for low-risk patients (risk score < 1). 
(B) The y-axis is the survival time. The red dot indicates the 
dead patient, while the green shows the alive patient. (C) 
The y-axis is the AS events belonging to the ES type. The 
color indicates the risk score of each AS event in each pa-
tient. The red color indicates the high risk, while the green 
shows the low risk. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web 
version of this article.)   
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prognostic factors. We expected that protein AS regulated may function 
in the development of BLCA, however, further studies are needed to 
confirm our suggestion. 

Prognostic-related AS events were evaluated by KM survival curve, 
risk curve, ROC curve, and independent prognostic analysis. The KM 
survival analysis indicated that there was a notable difference in survival 
times between high-risk group and low-risk group (p-value < 0.05). 
Removing high-related AS events, we obtained ten AS events in ES type, 
six AS events in AA type, nine AS events in AD type, seven AS events in 
AP type, six AS events in AT type, six AS events in RI event, and five AS 
events in ME type (Fig. 4 and Supplementary Figs. 3-8). We concluded 

that the death rate of patients increased as the large the risk score was. 
Two groups of AS events were obtained for ES type: low-risk group (AS 
events occurred in MYH11, MAF1, CBY1, and NUP50) and high-risk 
group (AS events occurred in PRKRIP1, CBLB, SLC7A6, LDLRAD3, 
MARK1, and INO80Es). Myosin heavy chain 11 (MYH11), encoded by 
the MYH11 gene, is a smooth muscle myosin that belongs to the myosin 
heavy chain family. Previous studies have proved that the mutations of 
MYH11 lead to BLCA by involving in cell adhesion, cell migration, and 
tumor suppression pathway (Nie et al., 2020; Ning and Deng, 2017). For 
AA type, AS events located in in FDPS, BRD1, EMC9, PATZ1, C21orf59, 
and DTNA genomic regions are the risk factors that affect the survival 

Fig. 5. The K-M curves of the prognostic predictors about the OS characteristics of seven different kinds of AS events. (A) is for ES, (B) is for ME, (C) is for AP, (D) is 
for RI, (E) is for AT, (F) is for AD, and (G) is for AA. The p-value < 0.05 shows a significant difference between the low and high groups. 
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Fig. 6. The ROC curves for seven kinds of AS events. ROC curves are built by clinical features. All models constructed are satisfied with the model prediction ef-
ficiency (AUC > 0.65). The top 3 AUC values are ES (AUC = 0.836), AD (AUC = 0.782), and AA (AUC = 0.756). 
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times of BLCA patients. Xu et al. reported that DTNA is a significant gene 
by univariate Cox regression model (P < 0.005) (Xu et al., 2019). For AD 
type, AS events located in IL32, ATXN2, SKA2, TSEB2, APOL4, TTC21A, 
NCBP2, ACAA1, and ZNF706 genes are the risk factors that affect the 
survival times of BLCA patients. ACAA1 expression is positively corre-
lated with CD4 + T cell infiltration. The copy number variation of 
ACAA1 was negatively associated with CD4 + T cell polarization. Feng 
et al. suggested that ACAA1 significantly correlated with 13 out of 20 
types of cancer, including bladder cancer. Cancers with higher ACAA1 
expression level displayed higher OS, while those with reduced ACAA1 
expression had worst outcomes (Feng and Shen, 2020). They concluded 

that ACAA1 acts as a tumor suppressor, by altering the nutrient 
configuration and immune suppression (Sciarrillo et al., 2020). For AP 
type, AS events located in TPM1, TXLNA, PACS2, C9orf9, TRIM29, MIA3, 
and EFNA3 genes are the risk factors that affect the survival times of 
BLCA patients. Zhang et al. reported that compared with noncancerous 
tissues, TPM1 related to cell cycle, cell proliferation, cell movement, 
receptor signaling, and viral carcinogenesis, which was significantly 
downregulated in BLCA (Zhang et al., 2020). For RI type, AS events 
located in MGRN1, FXYD3, PYCR1, C19orf54, CREBZF, and PPP1CB 
genes are the risk factors that affect the survival times of BLCA patients. 
In 2011, scientists identified FXYD3 has important biological 

Fig. 7. The correlation network of SF and AS 
events. The purple triangle indicates SF; the green 
circle indicates the AS events with good prog-
nostic states (HR < 1), the red circle indicates the 
AS events with poor prognostic states (HR > 1). 
The red line represents this relationship as a 
positive regulation (PCC > 0.6), while the green 
line represents this regulation as a negative 
regulation (PCC < -0.6). (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 8. Representative AS events and SFs. (A) The PSI values of SRSF7-53280-RI across 33 TCGA cancers. The red box indicates the PSI values in cancer samples, 
while the green box indicates the PSI values in normal samples. There are RI ASs occurred in SRSF7 from exon 4.1 to exon 4.6. (B) The IGV visualization of TIA1 CLIP- 
seq around SRSF7 genomic position. There are three replicates’ experiments. The value below the peak represents the number of reads. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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ramification for the genetic study of UC by mRNA expression levels and 
IHC validation, and they FXYD3 may be a promising novel biomarker for 
the differential diagnosis of renal UC and a promising prognosis marker 
of UC from bladder (Zhang et al., 2011). Liu et al. identified 18 glucose 
metabolism-related, DNA methylation-related and survival-related 
genes, including pyrroline-5-carboxylate reductase 1 (PYCR1) (Liu 
et al., 2021). PYCR1 expressions extremely correlated to their promotor 
methylation strengths as well as to tumor stages of bladder cancer pa-
tients (Liu et al., 2021). PYCR1 was found to be able to promote bladder 
cancer cells’ proliferation, migration, and evasion via cell functional 
experiments (Liu et al., 2021). For ME type, AS events located in COX14, 
N4BP2L1, MTFR1L, RPE, and TMEM104 genes are the risk factors that 
affect the survival times of BLCA patients. In 2021, Huang et al. also 
reported AS events located TMEM104 can serve as a prognostic-related 
signature (14). Fig. 5A-5G showed the survival analysis results of these 
ES, ME, AP, RI, AT, AD, and AA. Further analysis of the prediction model 
created by one type of AS pattern showed that ES events were more 
effective for distinguishing the survival outcome of BLCA patients than 
the predictor models built using the other six types of AS pattern (AUC 
= 0.836). Notably, seven prognostic prediction models performed well, 
with an AUC > 0.65. 

Finally, we constructed an AS-SF regulation network consisting of 
five SFs and 46 AS events. In which, TIA1-RBM5 was selected for vali-
dation. IGV results TIA1 ChIP-seq peaks bind the RBM5 location. 

5. Conclusion 

Abnormal AS is widely regarded as a novel indicator of the carci-
nogenesis process, and SF plays a crucial role in this process. Therefore, 
we aimed to screen critical AS events and SFs that serve as biomarkers 
for the carcinogenesis and progression of BLCA. A prognostic model was 
constructed by different kinds of AS events, which showed significant 
effects in predicting OS times. However, this study has limitations; for 
example, we lack experimental validation. Yet, our computational 
analysis may give the views for researchers at the AS aspect and improve 
our understanding of AS events and BLCA. 
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