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a b s t r a c t

Cancer has received extensive recognition for its high mortality rate, with metastatic cancer being the top cause of 
cancer-related deaths. Metastatic cancer involves the spread of the primary tumor to other body organs. As much 
as the early detection of cancer is essential, the timely detection of metastasis, the identification of biomarkers, and 
treatment choice are valuable for improving the quality of life for metastatic cancer patients. This study reviews the 
existing studies on classical machine learning (ML) and deep learning (DL) in metastatic cancer research. Since the 
majority of metastatic cancer research data are collected in the formats of PET/CT and MRI image data, deep 
learning techniques are heavily involved. However, its black-box nature and expensive computational cost are 
notable concerns. Furthermore, existing models could be overestimated for their generality due to the non-diverse 
population in clinical trial datasets. Therefore, research gaps are itemized; follow-up studies should be carried out 
on metastatic cancer using machine learning and deep learning tools with data in a symmetric manner.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ 

by-nc-nd/4.0/).
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1. Introduction

According to the American Cancer Society, cancer refers to a 
group of diseases caused by uncontrollable growth and rapid spread 
of abnormal cells in various body parts [1]. Cancerous cells are 
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developed when normal cells stop functioning as they ought to, 
progressing rapidly into a tumor, and possbily invade other body 
parts different from their origin. Even worse, cancer behaves dif
ferently according to the organ of origin [2]. In 2020, there were 19.3 
million new cases of cancer and about 10 million cancer-related 
deaths worldwide [3]. It is the second leading cause of death in the 
USA, with an estimate of 1958,310 new cases and 609,820 Americans 
expected to die due to cancer in 2023 [4]. In the USA, the adoption of 
improved targeted therapies has resulted in the steady decline in 
specific cancer-induced mortality rate to 29% between 1991 and 
2017. However, the mortality rate traceable to other cancer types 
such as liver cancer, pancreatic cancer, uterus cancer, sarcoma and, 
de novo or recurrent metastasis remain stagnant. Unfortunately, 
most patients in this category die within five years of diagnosis [5,6].

Metastasis is the invasion and spread of abnormal cancer cells to 
adjoining body parts and organs, with over 90% mortality, making it 
the primary cause of cancer-induced death [7,8]. It is influenced by 
several things, including the microenvironment [9] or the resistance 
of inhibitors in the body [10]. Fig. 1 shows the process of a primary 
tumor metastasized in the brain. A review by Schneider & Pozzi [11]
discusses some factors that either aid or inhibit the occurrence of 
metastasis. Some of these influencing/contributing factors are nat
ural compounds or chemicals in the human body. An example is the 
gut microbiome, a microbial signature known to promote cancer 
development [12]. Although metastasis can occur in any organ of the 
body, specific body organs such as bone, brain, lungs, lymph nodes 
and liver are more prone as sites for specific cancer metastasis (see 
Fig. 2) [13]. For lung cancer patients, the most common pathological 
subtype of patients with bone metastasis is adenocarcinoma [14,15]. 
However, the spine, which consists of the cervical, lumbar, and 
thoracic segments, is the most frequent site of bone metastasis ac
cording to Zhang & Gong [15], whereas the rib is the most frequent 
site according to Zhou et al., [14].1,2 .

The continuous generation of large and complex datasets in 
healthcare is a significant enabling factor in the adoption of machine 
learning. This is because it has a proven potential for analyzing these 
complex datasets, thus advancing the technological objective of 
precision medicine in cancer [12]. In Fig. 3 we depict the typical 
framework of data science techniques that can be categorized under 
ML for detection and prediction analysis. In the figure, we show that 
there are different types of data, which must undergo data pre- 
processing (such as removal of duplicates, detection of outliers and 
incomplete data, and addressing the issue of missing data) before 
they are fit for analysis. The data can either be structured or un
structured. Structured data are quantitative and organized; hence, 
they can be easily analyzed using predictive software. Unstructured 
data such as images, video, audio, and text, on the other hand, are 
unorganized. Input data visualization helps to detect outliers, gain 
prior information about the data, and inform appropriate procedure 
for subsequent analysis. Feature engineering which involves the 
extraction and selection of useful features is a key step in the fra
mework. For example, convolution is an efficient way of feature 
extraction when working with image data in deep learning. In other 
models, dimension reduction and feature maps are used for elim
inating data redundancy. Moving on to model training, data aug
mentation (particularly in deep learning) is sometimes necessary to 
increase the robustness of the trained model by introducing it to 
different data formats. However, a concept that is popularly em
ployed in classical ML for imbalanced data is oversampling. It helps 

to make sure that there are sufficient samples of each class label in 
the data during training. Furthermore, an important procedure un
dertaken to evaluate and tune model performance is cross valida
tion. This technique is used during training for the tuning of 
hyperparameters toward the model robustness and generalization to 
new data. Parameters and hyperparameters are unique for different 
algorithms. Nevertheless, to produce models that are not susceptible 
to overfitting, parameter tuning should be expertly done.

With metastasis being the leading cause of mortality in cancer 
patients, ML frameworks aimed at early detection, identification of 
the specific form of metastasis, and staging can enable proper di
agnosis and treatment recommendation [16]. Studies also show that 
metastasized tumor retains the properties of its primary organ. With 
the unique molecular signature of metastasized tissues, ML algo
rithms can be used to identify primary lesion from gene expression 
data. This is a useful feature for distinguishing between tumor types 
as a complementary procedure to tumor biopsy [2,17,18]. Further
more, generated data such as gene expression data are usually high- 
dimensional, containing heterogenous molecular profile of tumors 
as features. The manual selection of these features is complex, unless 
handled with computational tools [19]. In addition to feature se
lection, the use of machine learning for cancer research ranges from 
risk assessment, lesion grading and genomics, lesion detection and 
characterization, imaging, prognosis, staging, therapy response, and 
other downstream applications [20].

Previous papers have contributed to the review of computer- 
aided diagnosis of metastasis cancer [21–24,25,26]. While these 
studies are quite valuable, they seem to be limited in their scope of 
coverage, with most of them focusing on only one type of cancer 
and/or one aspect of ML/DL application in cancer metastasis re
search. In this article, we extend the review of the application of 
machine learning in metastatic cancer beyond one body organ and 
data type. We give a comprehensive review of the available recent 
researches and progress on the usage of ML for the prognosis and 
detection of metastasis, determination of overall survival, response 
to treatment, tumor heterogeneity, and the occurrence of racial 
disparities in the data used for analyses. We took the forms of pre
sentation of the datasets and their peculiarities to specific compu
tational methods into cognizance. The necessary procedures for 
improving the performance and the limitations of specific methods 
were also discussed. Finally, based on the potentials and possibilities 
of ML, we discuss their prospects for metastatic cancer and high
lighted new directions in the future application of computational 
tools to metastatic cancer.

2. Machine learning for metastatic cancer drug discovery

Over the years, the need to provide treatment options for several 
diseases, especially a mortality-inducing disease like cancer has 
become paramount. Drug discovery and development is a long 
process which takes quite a number of years and involves lots of 
funds. In fact, the launching of a new drug can take up to 15 years 
and over $1 billion in cost [27]. For the identification of novel targets, 
the drug design field is being revolutionized using several virtual 
screening approaches. Virtual screening (VS) is important for the 
repositioning and repurposing of drug for the optimization and 
quick characterization of novel drug candidates while speeding up 
drug discovery [28,29]. Ligand-based virtual screening and struc
ture-based virtual screening are two major areas of VS. With the 
involvement of 3D visualization in VS, objective insight and ease of 
manipulation is derived. As the popularity and efficiency of deep 
learning tools advances, the visualization and analysis of 3D images 
are easier.

A key technology that falls under the domain of drug discovery is 
molecular docking. Molecular docking is a widely used tool in VS for 
the streamlining of search for drug-target interaction, especially 

1 Metastatic Colorectal Cancer May Spread Early in the Disease, Study Finds was 
originally published by the National Cancer Institute.

2 Häggström, Mikael (2014). “Medical gallery of Mikael Häggström 2014”. 
WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.008. ISSN 2002–4436. Public 
Domain.

O.O. Petinrin, F. Saeed, M. Toseef et al. Computational and Structural Biotechnology Journal 21 (2023) 2454–2470

2455



when there is a confirmation of the presence of protein 3D structure. 
Docking aims to predict how a ligand will attach to a receptor in its 
binding site using either empirical, descriptor-based, knowledge- 
based or force-field-based scoring functions [30,31]. As a successful 
in silico method, docking predicts the interactions between mole
cules and targets. However, the shortcomings of docking include 
conformational and structural flexibility, directional interactions, 
low accuracy due to assumptions and simplifications in scoring 
functions [32]. Over time, the involvement of ML in the formulation 
of the underlying models for docking has increased the accuracy of 
molecular docking. A key area of its impact is its application in the 
reliability of scoring functions. The limitation of the traditional 
scoring functions for reverse docking approach is tackled with ML’s 

ability to enable the scoring functions efficiently discriminate be
tween non-targets and targets [33,34].

Machine learning have also been proven to be effective tools for 
metastatic cancer drug discovery in the areas of toxicity prediction, 
drug repositioning, virtual screening, and the prediction of the 
bioactivity of molecules [35,36]. It aids the virtual screening process, 
either as a standalone method or an ensemble with other VS 
methods. These tools have been effective for enhanced similarity 
search, performance evaluation, and the improvement of scoring 
functions, thereby improving the drug design and discovery process 
[37,38]. The chemical space is large, containing billions of chemical 
structures that needs to be explored [39]. Each compound in the 
chemical compound datasets used in screening usually contains a 

Fig. 1. A depiction of the process of primary tumor metastasized in the brain. The figure was adapted from "Metastatic Colorectal Cancer May Spread Early in the Disease, Study 
Finds" which was originally published by the National Cancer Institute.

Fig. 2. Common sites and symptoms of metastasis in the body. [Mikael Häggström (25 July 2014). "Medical gallery of Mikael Häggström 2014". WikiJournal of Medicine 1 (2).] 
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large number of files for each compound. The analysis of these da
tasets, new chemical descriptors, and assessing the scores of docked 
poses require the use of computation-intensive procedures such as 
feature ranking/selection, and visualization [40]. Machine learning 
therefore appear well-suited to these roles, albeit at a heavy com
putational overhead. In addition, ML algorithms have been used to 
detect the response of patients and cancer cell lines to new drug and 
combination of multiple drugs [41].

Meanwhile in structure-based VS, the explicit representation of 
the receptor in each docking run results in a high expense of com
putation, making it difficult to incorporate the receptor’s flexibility. 
Combining ensemble docking is a viable alternative where con
sensus strategies is used to aggregate the scores. Using machine 
learning classifiers such as gradient boosting trees and logistic re
gression, Ricci et al., [42] analyzed ensemble docking results with 
repeated 4-fold cross validation for 30 times. Their results showed 
the significant performance of the ML methods over the traditional 
consensus strategies. The ensemble docking result for each protein 
was however represented as a matrix before analysis. The re
presentation indicates the importance of preprocessing techniques 
such as feature engineering and representation of different data 
types in ML. Ensemble of algorithms also utilize the concept of the 
wisdom of crowds for prediction of drug-drug interaction using 
more than one algorithm. In Kumar et al., [43], the deep learning 
architecture used combined algorithms such as convolutional neural 
network, recurrent neural network, and mixture density network in 
the prediction of drug synergy in the development of cancer drugs. 
In the same trend, Sharma & Rani [44] used a modified rotation 
forest to predict cancer drug sensitivity. Compared with the Cancer 
Cell Line Encyclopedia (CCLE), and Genomics of Drug Sensitivity in 
Cancer, the ensemble method improved the prediction of anti- 
cancer drug response. However, to address the problems of si
multaneously integrating multiple sources of information, novel 
techniques have been developed. One of these is the combination of 
multiple kernel learning algorithms with Kronecker regularized least 
squares into a large drug-target interaction framework [45]. This 
conceptual approach integrates heterogeneous sources of informa
tion into one chemogenomic space which simplifies the prediction 
of drug-target interactions.

A major challenge during the metastatic cancer drug discovery 
process is the failure of the lead compound during the trial phase. An 
example is an ovarian cancer drug known as Olaparib which failed 
its Phase I trial [46]. Evidently, this must have led to a waste of time 
and other resources. In addition, the drug development pipeline is 
impacted by complicated and massive data from microarrays, 
genomics, proteomics, and clinical trials. Therefore, it provides an 
opening for the deployment of machine learning. Furthermore, ML 
can aid cancer drug discovery by identifying targets and hits, opti
mizing the lead compounds [47], and predicting cancer treatment 
outcomes during clinical trials [48]. This is seen in its ability to 
identify drug-cancer cell interactions from in vitro databases [49]. A 
typical example is the aberrant activation of Signal Transducers and 
Activators of the Transcription 3 (STAT3) which results in oncogenic 
gene expression for tumor proliferation and metastasis, while its 
activation in immune cells elevates immunosuppressive factors [50]. 
For its role in tumor formation and metastasis, STAT3 signalling 
pathway is a therapeutic target in cancer treatment [51]. Classical 
ML algorithms such as SVM, KNN, Gaussian naive Bayes, and random 
forest were used in [52] to classify inactive and active inhibitors for a 
STAT3 drug-target based on a 10-fold cross validation. The ML-based 
virtual screening revealed 20 compounds which were active against 
STAT3, and were docked into STAT3 active site for anticancer drug 
development. In a similar context, [53] used machine learning mo
lecular docking simulation to determine the structure-activity re
lationship between eight different essential oils from Ocimum 
basilicum and BRCA1 and BRCA2, which are protein targets for breast 
cancer. The study used a lazy predict package which contains a suite 
of machine learning methods to reveal that components from these 
essential oils can be used in the development of drugs against MCF-7 
breast cancer cell line. Furthermore, candidates with effective bio
logical activity against the protein targets were identified, while the 
inactive ones were detected and excluded to prevent resource wa
stage from unsuccessful testing.

Due to the high cost and time implications associated with tra
ditional drug discovery methods, researchers have been compelled 
to embrace more economical, yet powerful techniques of ML. These 
have been instrumental in metastatic cancer drug sensitivity pre
diction and the deduction of knowledge from drug-target 

Fig. 3. A Typical Framework of Data Science Techniques that can be categorized under ML for Detection and Prediction Analysis. 
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interactions, particularly within the framework of precision on
cology in cancer treatment therapies. However, a potential limitation 
to this approach is the quality of data used for analysis. [54]. 
Moreover, the low signal-to-noise ratio of small-molecule structure- 
activity data makes prediction of new candidate drugs difficult in 
most prediction tasks [55]. Certain results also show that ML 
methods can sometimes outperform complex ones [56]. Whereas, a 
general performance-enhancing technique in the application of ML 
in drug discovery is to carry out analysis using combination of 
methods such as ensemble methods. Furthermore, learning based on 
an existing deep learning base model (e.g., ImageNet) can also be 
used to train a more complicated deep learning-based prediction 
sub-model. This approach is immensely useful in reducing model 
training time and effort [57].

3. Response to treatment by metastatic cancer patients

Resistance to anticancer drugs is a complex process that can arise 
from drug target alteration. One of the earliest studies in this area 
shows that the response of patients to chemotherapy and their 
survival depend on clinical factors such as the use of combination 
chemotherapy, previous record of surgery, response to che
motherapy during the early stage of treatment, and nourishment 
[58]. Apart from these, multi-drug resistance can also cause the re
lease of drugs outside the cell, and a reduction in their absorption or 
their inactivation. Other factors include tumor heterogeneity, tumor 
microenvironment, and cancer stem cells. Beyond the cellular level, 
genetic mechanisms that also contribute to drug resistance include 
apoptosis pathway blocking, micro-RNA, epigenetic altering, gene 
amplification, and DNA repair. Other fundamental causes for the 
reduced efficacy of cancer drug therapies (or drug resistance) could 
either be a change in chemotherapeutic agent target or drug meta
bolism [59–61].

Furthermore, the same way antibiotics overdose can induce drug 
resistance to a specific bacterium in other ailment or microbial in
fections, resistance to cancer drugs can also occur due to the genetic 
instability of human cancer cells having high proliferation rate [59]. 
All these factors contribute to metastatic cancer drug resistance and 
mortality in some patients [62]. Adverse reaction to the different 
types of treatment can also speed up the spread of the tumor. This, in 
addition to resistance to specific treatments, may necessitate the 
discontinuation of the treatment in question and a switch to another 
type. One of the challenges associated with metastatic cancer 
treatment involves recognizing the appropriate treatment that 
maintains the best quality of life suitable for the patients. Some
times, this may require discontinuing treatment even before an 
adverse reaction occurs. A practical study that utilized ML to eval
uate this tendency was carried out by Petinrin et al., [63]. In their 
work, they used an optimized Gaussian process classifier in the 
prediction of docetaxel treatment discontinuation for metastatic 
castration-resistant prostate cancer patients. By training the model 
on a combination of three datasets, appropriate metrics such as Area 
under Precision-Recall Curve (AUPRC), and Area under Curve (AUC) 
were used to evaluate the model due to the skewness of the data. 
The optimized classifier performed better than traditional ML 
methods in predicting treatment discontinuation for the mitigation 
of adverse effects. Using random forest for feature ranking, the 
crucial features that influenced the analysis were seen to be para
meters associated with lab record data. These include glucose level, 
benign or malignant neoplasm, creatinine, blood urea nitrogen 
value, target lesion, testosterone level, and lymphocytes value. 
Missing data, which happens to be a common occurrence in health 
databases, was handled using single imputation method. However, 
multiple imputation methods are recommended to be more suitable 
for handling missing data [64]. Regarding patient’s response to drug 
in metastatic and recurrent colorectal cancer patients, Lu et al., [65]

conducted a cross-validation study to determine recurrent or me
tastatic colorectal cancer patients who show sensitivity to FOLFOX 
(s-FU, leucovorin and oxaliplatin) therapy. Their approach was to 
apply six parameter-tuned machine learning algorithms to a com
bination of microarray datasets. The adopted models were based on 
support vector machine and random forest algorithms, which 
showed significant performance superiority over other algorithms 
such as k-nearest neighbor, gradient boosting machine, decision 
tree, and neural network. In a previous study [66], SVM and random 
forest have been noted as suitable algorithms for microarray data
sets, especially when the genes are selected. The variety of several 
microarray datasets improved the reliability and universality of the 
analysis compared to the use of a single microarray dataset. This 
concept is similar to data augmentation in deep learning where a 
model trained on augmented data with variation is able to make 
better prediction. Using cross validation, the optimal parameter(s) 
for each algorithm can be tuned to improve performance of the 
models in the determination of each patient’s sensitivity to FOLFOX 
treatment. Different parameters are peculiar to each algorithm. 
During the training of the model, the best fit parameters are even
tually chosen. In addition, cross validation helps to curb overfitting, 
and improve model generalization.

Moreover, some studies reveal how biological factors affect the 
responses of patients to treatment. In a multivariate cox regression 
analysis by Van et al., [67], independent biological factors such as 
stem cell-ness, proliferation, Epithelial to Mesenchymal Transition 
(EMT) and DNA repair, radio-sensitivity, tumor acute and chronic 
hypoxia, and CD8+ T-cell parameters were seen as biomarkers which 
largely contribute to locoregional control rate in response to radia
tion. Furthermore, surface markers and transcriptomic phenotype, 
abundance of neoantigens, suppressive tumor microenvironment, 
CD8+ and CD4+ T cells, T cells stemness and memory, chimeric an
tigen receptor (CAR) design and integration site, cytokine produc
tion, tumor infiltration, epigenetics (signatures), surface markers 
and transcriptomic phenotype, CAR methylation, tumor load, an
tigen escape, immunological clearance, and inflammatory cytokines 
are noted as biological and molecular factors which can be used to 
determine the response to adoptive cell therapies [68]. Risk strati
fication analysis can be conducted based on these biological factors 
to determine when treatment regimen should be intensified or 
lessened. Tseng et al., [69] showed that by using machine learning 
algorithms, patients risk level and survival can be assessed based on 
the specific cancer type, the occurrence of distant metastasis, or the 
occurrence of locoregional recurrence. These studies show that 
models trained on the genetic and clinicopathologic data can ef
fectively inform the classification of patient groups based on the 
level of risk and survival. Hence, sufficient attention can be placed on 
patients in the high-risk group to improve their quality of life and 
longevity.

Furthermore, study shows that the adherence of patients to 
treatments such as tamoxifen citrate influences the recurrence and 
survival rate of patients [70]. Factors such as prior clinical proce
dures, health care encounters, previous treatments, and comorbidity 
influence patients’ adherence to particular treatments. To examine 
the impact of treatment adherence within the ML context, Yerra
pragada et al., [71] trained machine learning models such as logistic 
regression, random forest, boosted logistic regression, and feedfor
ward neural network with a data of 3022 patients where 40% were 
nonadherent patients, and 60% were adherent patients. The trained 
models were evaluated using area under receiver operating char
acteristic curve (AUROC). Logistic regression, the best performing 
model for the data, was used to determine the highest contributing 
variables. The model showed that age, pre-treatment procedures 
(such as arterial surgery, radiation oncology, and lymphatic nuclear 
medicine), therapy (such as antidepressants, beta blocker, and sti
mulants), and previous diagnoses accounted for the patients’ 
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adherence to treatment. The model however had higher confidence 
among patients classified as adherent compared to patients classi
fied as nonadherent. The results of these studies show the capability 
of ML to potentially limit unnecessary invasive procedures while 
making personalized and adaptive therapy for patients. The genetic 
makeup of individual patient, and the presence of anti-tumorigenic 
agents such as cyclooxygenases and lipoxygenases inhibitors makes 
each patient’s response to treatment different [11]. On a similar note, 
using Convolutional Neural Network and Recurrent Neural Network, 
Xu et al., [72] predicted the response of non-small-cell lung cancer 
patients to definitive chemo-radiation treatment. The outcomes of 
the treatment were either distant metastasis, progression, or local- 
regional recurrence. Based on the analysis of time series CT images 
of the patients, deep learning methods were used to improve out
come prediction by integrating the imaging scans at multiple time 
points.

An area of cancer treatment that provokes keen interest in re
searchers is the rate of relapse in patients. For instance, studies show 
that about 70% of colorectal cancer patients with liver metastasis 
tend to relapse within two years of treatment with surgical resection 
[73]. Thus, Wei et al., [74] utilized the computational and predictive 
ability of deep learning to develop a deep learning-based radiomics 
model to determine the response of colorectal liver metastases pa
tients to chemotherapy treatment. Convolutional layers were used to 
extract the radiomic features from the CT and MRI images, and the 
classifier part of the deep learning model effectively predicted re
sponse to chemotherapy. Zhu et al., [75] also used deep learning to 
determine the pathological tumor regression grade response of 
colorectal cancer liver metastasis patients receiving preoperative 
chemotherapy treatment. These studies indicate that MRI-based 
deep learning model could effectively predict pathological response 
compared to the traditional Response Evaluation Criteria in Solid 
Tumours and survival outcomes after hepatectomy based on the pre- 
chemotherapy and post-chemotherapy MRI.

With many available treatment options, the factors such as dif
ferences in genetic makeup of different patients and their body’s 
ability to deal with external agents can affect how the body will 
respond to a chosen treatment. As a basis for pre-operative treat
ment planning, ML can be utilized to predict the expected response 
based on specific information. A non-general risk stratification for 
different treatment options tailored for each patient will enable the 
physician, patients, and stakeholders to be involved in the treatment 
process to make informed decision on treatment options without 
risking expedited mortality. Since ML models are trained based on 
specific features, the appropriate features which takes cognizance of 
the factors should be considered in model building. In addition, 
important features can be extracted during convolution of image 
data. We show the use of some ML algorithms for the prediction of 
treatment discontinuation for metastatic cancer patients in the 
supplementary material. The code for reproducibility can be found 
on our github page.

4. Early detection of cancer metastasis and determination of 
survival outcomes

Dissemination of metastasis occur at the early stage of malignant 
cancer progression, but it often takes years before it is clinically man
ifested. The occurrence of clinical manifestation indicates closeness to 
mortality for the vast majority of patients [76]. Cancer research over 
the years seek to understand the mechanism behind migration of 
cancer cells and metastasis. The identification and monitoring of bio
markers can give relevant information that help to predict the onset of 
metastasis, and in essence increase the chances of survival [77]. A study 
conducted on 295,213 patients revealed that a more significant per
centage of the newly diagnosed breast cancer patients had metastasis 
in the bone compared to the liver, lungs, and brain [78]. This was 

attributed to the interaction between the osteoblasts (or osteoclasts) 
and the tumor cells, making breast osteoblast-like cells an early marker 
for bone metastasis [79]. Additionally, genetic markers are considered 
strong contributors to how the diagnosis and treatment of breast and 
bone cancers is approached. The study conducted by Cai et al., [80]
provided evidence to this effect. They revealed that the disruption of 
the miRNA-dependent regulatory axis, which links the tumor sup
pressor microRNA-124 to the interleukin-11-induced osteolysis, makes 
microRNA-124 and Interleukin-11 possible prognostic markers. These 
also play an important role in the identification of new therapeutic 
targets for early stage breast cancer and advanced stage bone meta
static patients. Furthermore, independent risk factors such as the 
serum concentration of biomarkers CA-125, alkaline phosphatase and 
the histopathological type is advised to be noted in diagnosed patients 
for early detection of bone metastasis [14].

A significant aspect of the application of ML in cancer research is 
the early detection of cancer cells in the body, and the subsequent 
prediction of the expected period of survival for affected patients. 
The use of these statistical methods for the determination of asso
ciated risks and life expectancy has become prominent over the 
years [81]. Furthermore, deep learning is used to identify specific 
tumor types based on image data. DeepSurv, a deep learning-based 
algorithm, showed better performance in the recommendation of 
treatment and prediction of survival outcome of non-small cell lung 
cancer patients compared to nodes, tumors and metastatic staging 
systems [82]. MetaCancer is a similar model which applies deep 
learning to microRNA sequencing (microRNA-Seq), RNA sequencing 
(RNA-Seq), and DNA methylation data for the identification of me
tastatic cancer status [83]. The MetaCancer model showed remark
able effectiveness as a preoperative noninvasive tool in diagnosing 
lymph node metastasis. The data used for the analysis was obtained 
from magnetic resonance imaging and DL-mined tumor image in
formation of stage IB to IIB cervical cancer patients. Based on the 
AUC and Kaplain-Meier evaluation metric, the status of the lymph 
node metastasis and the survival outcome of the patients were de
duced [84]. In the same vein, for a preoperative diagnosis of meta
static lymph nodes in rectal cancer patients, Ding et al., [85] reported 
the use of a faster region-based convolutional neural network no
mogram. Unlike solid tumors, there are difficulties in recognizing 
lymph nodes that have large quantities and minor differences. The 
model exhibited excellent performance based on reliability, con
venience, and the capacity to predict metastasis status and degree. 
However, the region-based convolutional neural network is based 
only on MRI images and excludes pathological images. Before 
creating a nomogram for predicting the presence of lymph node 
metastasis, algorithms such as logistic regression can be used to find 
the best-fit model. Peak et al., [86] used this method to detect lymph 
node metastasis in penile cancer. However, the data used had limited 
clinicopathological information. In their study, details regarding the 
lymph node, such as dissection type, and the time between penile 
tumor surgery and metastasis were not indicated. Essentially, 
treatment of metastatic cancer is based on factors peculiar to each 
patient, such as the number of lymph node metastasis.

In addition, due to the low accuracy recorded on the routinely- 
used preoperative methods in determining the staging/number of 
lymph node metastasis in gastric cancer patients, Dong et al., [87]
implemented a deep learning radiomic nomogram for early detec
tion of metastasis. The radiomics technique converts the medical 
images into features before selecting the important ones for quan
titative analysis. The deep learning radiomic nomogram had a high 
correlation with the overall survival of locally advanced gastric 
cancer patients. However, despite the model’s predictive perfor
mance for N staging, the model showed that the combination of 
computed tomography (CT) and endoscopic ultrasonography has a 
higher chance of improving the accuracy of N staging. The derived 
nomogram can also be used with machine learning methods.
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Meanwhile in some cases, metastasis is already present at the 
time of cancer detection. For instance, it is highly likely that me
tastasis has already occurred at the time of rectal cancer detection 
[88]. In tackling the difficulty associated with rectal cancer metas
tasis due to the wide variation in the overall survival, a study by Zhao 
et al., [89] revealed a high concordance index of lasso penalized cox 
proportion hazard regression. However, research by Nicolò et al., 
[90] on the possibility of a metastatic relapse by breast cancer pa
tients revealed that the mechanistic model built for prediction per
formed similarly to machine learning models. With a C-index of 0.65 
(95% CI, 0.60–0.71), the mechanistic model had comparable perfor
mance to examined machine learning algorithms. Nevertheless, a 
need for the validation of mechanistic model on external datasets is 
recommended. Notwithstanding, the predictive performance of ML 
will enhance accurate expectations and clinical decision-making for 
patients and doctors.

Switching our attention from patients to medical personnel, 
factors such as psychology, exhaustion, fatigue, and level of expertise 
can cause a degradation in performance and diagnostic accuracy. 
Consequent to the fact that human concentration and efficiency can 
wane over time, Liu et al., [91] trained, tested, and validated some 
classical ML and DL models for the determination of metastatic 
auxiliary lymph nodes in breast cancer patients based on contrast- 
enhanced computed tomography images. The models were trained 
with 800 image samples. Although specific ML methods such as 
support vector machine and random forest performed better than 
some of the examined DL architectures, the overall best performing 
model, DA-VGG19, is a deep learning-based model. This outcome can 
be attributed to the improved performance of deep learning when 
data augmentation is applied to image data. Similar to the way 
where data augmentation can be a necessary preprocessing step for 
deep learning, dimensionality reduction can be implemented on a 
dataset before training with a machine learning algorithm. In Chu 
et al., [92] where linear regression, support vector machine, decision 
tree, and k-nearest neighbour were trained based on an initial da
taset of oral squamous cell carcinoma patients, the data dimension 
was reduced with principal component analysis (PCA) and bivariate 
analysis. In predicting the progression of the disease up to the stage 
of metastasis, whether the dataset had undergone data reduction or 
not, affected the performance of each algorithms. Furthermore, the 
identification of correlated features aided the removal of redundant 
variables and facilitated better prediction.

The interaction of organs is a major subject of cancer metastasis 
detection. In fact, bone metastasis is frequent in lung, breast, and 
prostate cancer. To demonstrate the benefit of computational ana
lysis in the detection of bone metastasis against the frequently used 
bone scintigraphy, Papandrianos et al., [93] proposed a convolutional 
neural network (CNN) model in the diagnosis of metastatic breast 
cancer in the bone using image data of whole-body scans. Compared 
to previous CNN-based models, the proposed model had superior 
performance, especially for RGB images compared to the grayscale 
images. Moreover, sufficient data should be used for deep learning- 
based models to guarantee accurate outcomes, and techniques like 
data augmentation should be utilized to make deficient data sources 
robust. In animals, there are studies which examined the growth of 
breast cancer bone macrometastasis; which are metastases with 
tumor cell deposits larger than 2 mm. Prediction was made by in
tegrating imaging parameters from PET/CT and MRI into a neural 
network. The application of these diagnostics tools in lab animals is 
a very important testing field for validating their efficacy in living 
tissues before the full scale adoption in human beings. The essence 
of these techniques lies in the timing before any symptom or phy
sical abnormalities are observed using the standard imaging 
methods; the flexible ML model can predetermine the possibility of 
metastasis based on extracted features such as tissue vascularization 
and glucose metabolism [94].

Nevertheless, even with an early diagnosis and removal of the 
primary tumor, a progression to metastasis is still a threat to mel
anoma patients. It is therefore vital to determine the prognostic 
biomarkers in these cases. Furthermore, due to the important in
formation contained in the serum about organism’s general health 
status, it is widely regarded as a source of biomarkers. Using ma
chine learning and Kaplan-Meier technique, Mancuso et al., [95]
predicted metastasis in early-stage melanoma patients with ser
ological biomarkers together with the histopathological and clinical 
features of the disease. The algorithm effectively classified patients 
according to the risk (high or low) of developing metastasis. Factors 
such as the serum level of interleukin-4, dermcidin, granulocyte- 
macrophage colony-stimulating factor, and Breslow thickness were 
identified to contribute to the risk level of metastatic progression. 
However, a large volume of patient data is recommended to avoid 
overfitting.

Another important type of metastasis is occult metastasis. They 
are metastases that are initially undetected during pathological ex
amination. They are different from micrometastasis which are me
tastases with tumor deposits lesser than 2 mm. The inability to 
detect the potential spread of cancer leads to grave consequences 
since early treatment will not be conducted. Therefore, it is essential 
to uncover occult metastasis before they are clinically evident based 
on clinical and pathological analyses [96]. However, both early and 
advanced local diseases are equally susceptible to the risk of occult 
metastasis [97]. Staging accuracy can be improved based on the early 
detection of occult metastasis. To reduce the chance of the re
occurrence of a bout with the disease, patients with high risk can be 
introduced to post-operative treatment. [98]. Variables such as 
perineural invasion and lymphovascular invasion have been shown 
to increase the rate of occult metastases [99,100], but their clinical 
application is limited prior to postoperative pathology [101]. Jiang 
et al., [102] used a deep neural network for the early identification of 
clinically occult peritoneal metastasis in gastric cancer patients. The 
model, built with preoperative CT images, outperformed clin
icopathological factors. However, other information such as endo
scopic ultrasonography and laparoscopy can be used to improve the 
specificity and sensitivity of the model. Bur et al., [103] on the other 
hand, trained four machine learning algorithms namely logistic re
gression, kernel support vector machine, decision forest, and gra
dient boosting machine for the detection of occult pathological 
lymph node metastasis in oral cavity squamous cell carcinoma pa
tients. The data, consisting of five clinical and pathological variables 
were from a single institution, and missing data were filled using the 
median single imputation technique. Five-fold cross-validation was 
employed to avoid overfitting. Based on the four different evaluation 
metrics, the decision forest performed better in terms of the AUC. 
Three out of the examined algorithms had the same sensitivity, and 
gradient boosting had a better specificity. However, all the ML al
gorithms performed better than models which are based on tumor 
depth of invasion.

One of the more rare cancer types encountered in diagnosis and 
therapy is glioblastomas [104]. Despite their rarity, they are regarded 
as the most common form of brain malignancy and are mostly lethal 
[105]. To distinguish single brain metastasis from glioblastomas, Bae 
et al., [106] trained a deep learning model and seven traditional 
machine learning models using radiomics features from MRI images. 
Feature selection techniques (such as recursive feature elimination, 
and LASSO), tree-based method, and parameters optimization were 
carried out based on tenfold cross-validation. Based on the AUC 
metric, the DL model performed better than the seven traditional ML 
methods, namely naive Bayes, k-nearest neighbor, AdaBoost, random 
forest, RBF-SVM, L-SVM, and LDA. AdaBoost was the best performing 
model among the conventional machine learning methods. A further 
comparison with two neuro-radiologists revealed that agreement is 
better using machine learning classifiers compared to the neuro- 
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radiologists. This agreement shows that the computational methods 
better generalize and overcome human bias and errors. In addition, 
the extraction of relevant radiomic features based on the feature 
importance ranking improved the performance of the deep learning 
model.

Moreso, a very powerful technique adopted in ML is the use of 
ensemble algorithms. They have proven to be better at prediction 
than using single algorithms. Using somatic mutation data of me
tastatic breast cancer, Mirsadeghi et al., [107] applied an ensemble of 
artificial neural network, random forest, and SVM to determine the 
possible driver genes for metastatic breast cancer. Their work argues 
that it is crucial to understand the drivers that influence the ag
gression of cancer cells, and not focus solely on the prognostic bio
markers of different cancer forms. The ensemble method, which is 
less expensive than bio-molecular techniques, performed better in 
driver gene prediction than the individual algorithms, based on the 
aggregated predicted scores from the individual algorithms.

In other works, variants of convolutional neural network, such as 
graph deep learning have also been used in metastasis prediction 
based on the goal of the analysis and the data type. The relation 
graph convolutional neural network used by Xu et al., [108] on image 
data was essential for the advanced extraction of gene expression 
features and the construction of the gene regulation network. The 
model outperformed existing network-based methods based on a 
ten-fold cross-validation of 1779 data samples. The provision of a 
higher feature dimension by the feature extraction model enhanced 
the convolutional neural network’s performance. Chereda et al., 
[109] also utilized the graph convolutional neural network to predict 
metastatic events in breast cancer patients using gene expression 
data. Extraction of features from image data, using an appropriate 
strategy for dealing with missing data, and combining traditional 
machine learning algorithms can improve the predictive ability of 
models [110].

Concisely speaking, the identification of biomarkers as indicators 
which suggest the onset of metastasis enables its early detection. In 
addition, an increase or decrease in the level of particular clinical lab 
values beyond certain thresholds can signal a potential risk of a 
primary tumor becoming metastasized. Since some tumors are 
hardly detected during pathological examination, computational 
approach can be a remedy. The extraction of radiomic features, a 
combination of traditional methods, selection of important features, 
and tuning of parameters have also been shown as essential factors 
to consider when developing appropriate models. Furthermore, a 
combination of methods can be used to extract information from 
data. Although ML has shown better performance compared to hu
mans in some cases, it is recommended that predictions should be 
further checked by experts, and prognosis be made based on a high 
level of agreement between human and computational agents. 
However, extensive datasets are needed for performance general
ization and to establish the effectiveness of the methods discussed.

5. Unravelling tumor heterogeneity using machine learning

Due to the dynamism of cancer, cancer tumor becomes more 
heterogeneous over the course of disease. This means the tumor 
mass containing cells with different molecular signatures develop; 
hence exhibiting different sensitivity to treatment. The existence of 
these cells between tumors having the same histopathological 
subtype and within the primary tumor and the secondary tumor is 
known as inter-tumor and intra-tumor respectively [111,112]. Since 
the distribution of heterogeneity cuts across multi-omics layers, 
methods for characterization of tumor heterogeneity should be 
based on the multi-omics layer instead of individual layers [113]. 
Cancer detection, treatment, and response to treatment are greatly 
affected by tumor heterogeneity [114]. The distinctions between the 
primary and metastasized forms of the same type of tumor in 

different patients can affect their specific treatment recommenda
tions and responses. In fact, a high level of tumor heterogeneity has a 
significant influence on survival outcome [115,116]. MRI, CT and/or 
PET scans are the examples of non-invasive radiological imaging for 
observing tumor heterogeneity [117]. Single-cell profiling of circu
lating tumor cells (CTCs) provides a unique perspective on tumor 
heterogeneity and further contributes to the identification of specific 
CTCs that contribute to metastasis [118].

There has been minimal success in the use of dynamic contrast- 
enhanced MRI for distinguishing different primary cancers from 
metastasis [119]. However, Lang et al., [120] used radiomics analysis 
to extract texture and histogram features from dynamic contrast- 
enhanced parametric maps. These were then fed as input to two DL 
techniques in a comparative study. The techniques adopted were 
convolutional neural network and convolutional long short term 
memory networks. The objective of the study was to distinguish 
other cancers from metastatic lesion in the spine originating in the 
lung. The use of the convolutional long short term memory network 
improved the accuracy by 0.1% compared to the convolutional neural 
network. Moreover, different variants of an algorithm can perform 
better analysis based on the improvement made to the algorithm. A 
study by Vera-Yunca et al., [115] reveals that tumor heterogeneity 
and its derived metrics serve as satisfactory predictors of overall 
survival of metastatic colorectal cancer patients. Additionally, it 
could be a factor that improves the prediction of drug efficacy. The 
authors analysed individual target lesions based on four metastatic 
colorectal cancer studies to determine the difference in tumor size 
dynamics since tumor size metrics do not consider tumor hetero
geneity. The rule-based classification, cross-correlation analysis and 
k-means clustering methods applied show that tumor heterogeneity 
is a useful predictor in the overall survival of metastatic colorectal 
cancer patients, and hence should be considered in drug design and 
discovery. The importance of primary tumor location, tumor size, 
and tumor heterogeneity as predictors of overall survival is further 
highlighted by the authors’ follow-up research [121].

Likewise, an analysis by Wang et al., [122] for the detection of 
nodal metastasis in lung cancer patients reveals that the tumor size 
and heterogeneity contribute to the estimation of the deep learning 
architecture used. Furthermore, using five machine learning 
methods, Lee et al., [123], by quantifying tumor heterogeneity and 
angiogenesis properties of MRI images, predicted the molecular 
subtypes and prognostic biomarkers of breast cancer. Texture and 
perfusion features were extracted for model training . Based on the 
AUC evaluation, random forest performed better than decision tree, 
logistic regression, Naive Bayes, and artificial neural network. Tex
ture irregularity and relative extracellular extravascular space were 
further revealed as important MRI features in prediction. Daye et al., 
[124] further establish that statistical tumor heterogeneity MRI 
profiling helps to improve the prognosis of metastatic cancer pa
tients. In their study based on FOLFOX- or FOLFIRI-based che
motherapy-treated stage IV colon cancer with liver metastasis 
patients, pathological and standard clinical variables were collected 
in addition to radiomic features extracted from the metastatic le
sions. Image segmentation and texture analysis were carried out 
before the survival outcome of patients was predicted using a 
random forest algorithm. The model trained on a combination of 
pathological, standard clinical and radiomics variables performed 
better than the models trained on selected variables. In a similar 
study, the radiomic features derived by the quantification and 
characterization of the tumor heterogeneity also improved the pre
dictive model by 16% [125]. This suggests that better model perfor
mance is more likely when a model is trained on data from several 
sources, compared to when it is limited to selected sources. Fur
thermore, the visualization of tumor heterogeneity can aid predic
tion and consolidate the process of decision making, thereby aiding 
diagnosis [126,127]. In addition to the visualization of biomarkers 
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derived from imaging, tumor heterogeneity can be automatically 
quantified with DL techniques [128]. However, improper and im
precise annotation of training data can affect performance [127].

Despite the utilization of machine learning algorithms in as
sisting clinicians and patients in the development and choice of 
personalized therapies, proper assessment and characterization of 
tumor heterogeneity for the collection of radiomic features before 
the application of machine learning will help to improve perfor
mance [111,129]. This is especially important because of the sig
nificant impact tumor heterogeneity has on patients’ sensitivity and 
response to treatment. Nevertheless, this should be done with 
careful consideration given the fact that high variability exists be
tween patients and cancer types. Moreover, the impact of tumor 
heterogeneity on patients’ survival outcomes suggest that it should 
be a major consideration in the development of drug design and 
discovery frameworks. The advancement of machine learning tech
niques such as extraction of important features, feature selection to 
curb the “curse of dimensionality”, optimization of algorithms, en
sembles, and several other advancements will contribute to the ease 
of tumor heterogeneity characterization. Furthermore, different de
grees of accuracy were obtained with different algorithms. This was 
partly predicated on the inclusion of variables such as tumor texture 
and perfusion as key features. The studies examined show that they 
improve the efficacy of metastatic cancer diagnostics using ML 
techniques. At the same time, a statistical treatment of tumor het
erogeneity features was also found to be a useful technique for 
making the predictive capabilities of models rather robust. Ulti
mately, a combination of radiomics, clinical and pathological vari
ables was seen to provide superior predictive performance.

6. Minorities in metastatic cancer data

There has been several discussions about the importance of racial 
consciousness in medical health. In fact, it is not out of place to 
expect that body composition will be different across racial groups. 
As a case in point, Asians have been observed to have higher visceral 
body fat vis-a-vis a lower body-mass index which makes them to be 
at risk of diabetes [130], while people of sub-Saharan African des
cent on the other hand generally have a higher muscle mass which 
can influence renal function [131]. However, it is also widely un
derstood that, in terms of genetics, biologically distinct categories do 
not exist amongst humans [132,133]. Moreover, beyond genetics and 
fundamental biological construct, several socio-economic factors 
and bias can contribute to racial disparities in healthcare and cancer 
research [134].

African Americans and people of sub-Saharan African descent 
reportedly have the lowest survival rate of most cancers amongst 
other races. Although the women sub-group within this population 
have a lower incidence rate (8%) compared to Caucasian women, 
they still have a higher rate of mortality (12%) [135]. Besides, there is 
also a possibility of having less representation of minority cancer 
patients’ documentation in electronic health record. This seriously 
restricts the identification and treatment of cancer-associated dis
eases which they might experience [136].

A study by Duma et al., [137] revealed that over the past 14 years, 
only 31% of 1012 clinical trials report ethnicity. Moreover, there is a 
decline in the recruitment of minorities in clinical trials. A report on 
the 2015–2016 global participation of races in clinical trials revealed 
that only 2.7% of African-American patients were involved in on
cology clinical trials, while 4% were enrolled in oncology drug trials 
[138]. This is quite low compared to the statistic that places them to 
be about 30% of the total population. In a study on the postoperative 
outcome in metastatic brain tumor patients, the authors eventually 
converted the race attribute to a binary attribute (Caucasian and 
Non-Caucasian) due to the high ratio of Caucasian patients (76.6%) to 

every other races in the data [139]. The ethnic/racial imbalance in 
clinical data prompts the need to have a careful design in precision 
medicine that caters to all [140]. As a matter of urgency, an inclusive 
approach to developing clinical trials in cancer research needs to be 
adopted [141]. The importance of this is clearly underscored by the 
fact that under-represented races are vulnerable to the aggressive 
effects of cancer due to unfavorable environmental and socio-eco
nomic factors. This should begin with the crucial task of identifying 
the reasons for disparities amongst races and regions in order to 
facilitate a better understanding of the drivers/mechanism of each 
metastatic cancer type [142]. However, the variation in geographic 
locations has been indentified as a factor that influences the risk of 
cancer in patients. Cancers that are potentially preventable such as 
cervical cancer, lung cancer and melanoma of the skin, are influ
enced based on factors such as obesity, smoking, and other factors 
that are closely related to healthy living. Population behavior in 
different environments tend to be localized, hence a strong indicator 
of cancer risk [143]. An example is a community with little or no 
smoking restriction or disincentive. One concrete study that pro
vided an example of these population behavior-based tendencies 
was carried out by Tseng et al., [69]. They conducted a risk stratifi
cation analysis of patients with oral cavity squamous cell carcinoma 
on an East Asian population.The objective was to fill the gap of the 
lack of prognosis for the East Asian population, where the disease is 
prevalent due to behaviour, culture, and socioeconomic status [144]. 
Similarly, Jiang et al., [102], in an analysis of gastric cancer patients 
with occult peritoneal metastasis, observed clear difference in stages 
at which cancer is detected across different races. These, among 
others show that disease presentation and prevalence in patients 
may vary due to their race and place of habitation.

Dong et al., [87] developed a deep learning-based radiomic no
mogram for gastric cancer patients with lymph node metastasis. The 
authors pointed out that their data, which was obtained mostly from 
Chinese patients and some of Italian descent, is deficient. They at
tributed the deficiency of the data to the different biology and ae
tiology associated with people from different races and countries. 
The issues raised by these studies show that it is vital to have a 
balanced composition of patient data from different races and 
countries to improve model performance. Nevertheless, some stu
dies recorded a minimal influence of racial disparity on model per
formance. One of these was Halabi et al. [145] who reported that 
patients from different racial backgrounds show similar reactions to 
the same treatment in their clinical trial. Moreover, ML has been 
used to highlight the impact of socio-economic factors in cancer 
care. In the study carried out by Qiao et al., [146], while their model 
ranked patient demography low in the determination of survival 
outcome for lung cancer patients, access to care was ranked high. It 
is worth mentioning that access to care is closely related to racial 
segregation in some communities. The study further revealed that 
older unemployed female minorities had less medical care access 
compared to Caucasian patients.

Similarly, in a study involving the most extensive report of me
tastatic breast cancer patients with bone-only metastasis, Parkes 
et al., [147] reported that age and race/ethnicity affects the overall 
survival of bone-only metastatic breast cancer patients. Further
more, in a study carried out by Deeb et al., [148] on 21335 metastatic 
cancer patients with terminal hospitalization between 2010 and 
2017, it was revealed that ethnic and racial minorities were more 
likely to receive high-cost but low-value medical intervention to
wards the end of their lives. The findings from these studies inform 
the need to understand the disparities and consider them when 
building machine learning models that will be robust for deploy
ment across racial and ethnic boundaries. It also necessitates con
sidering other variables affecting patients’ health status from 
minority and underrepresented races. The exorbitant cost of 
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randomized clinical trails may prove to be prohibitive to researchers’ 
ability to provide an all-inclusive framework for cancer diagnostics 
and treatment [149]. The data obtained from an otherwise skewed 
process, being inadequate in capturing ethnic/racial differences in 
patients, will unfailingly affect the performance of trained models 
when applied to real world data. Regardless, the critical nature of 
cancer as a disease compels researchers and clinicians in this field to 
adhere to best practices in ensuring the maintenance of an ethnically 
and demographically balanced database for research and model 
training.

7. Repositories for metastatic cancer data

The availability of public datasets is a key enabler of research 
activities and impactful data analysis within the cancer research 
community. However, locating metastatic cancer data may not be a 
straightforward task in some cases. A key objective of this review is 
to publicize some of these major data repositories in order to ad
vance their visibility and accessibility in the community. The loca
tion and brief description of selected repositories are provided.

The Cancer Genome Atlas (TCGA) is a repository that contains 
over 2.5 petabytes of genomic, transcriptomic, epigenomic, and 
proteomic data. It has publicly available metastatic cancer data for 
access by those in the research community. The purpose of the re
pository is to improve cancer diagnosis, prevention, and treatment- 
focused research. Researchers can access the public data via the 
genomics Data Commons Data Portal using web-based analysis and 
visualisation tools.

The Human Cancer Metastasis Database (HCMBD) is a user- 
friendly database for metastatic cancer. It contains metastasis-re
lated transcriptome data and metastatic genomic and genetic data, 
including copy number alteration and somatic mutation data. It also 
has pharmacological drug data. The purpose of the database is to 
enable better diagnosis and treatment of metastatic cancer based on 
a good understanding of the transcriptomic regulation mechanisms 
[150]. The database contains 29 cancer types and 45 cancer sub
types, with 38 metastasis sites obtained from over 455 experiments. 
Based on 7081 published literature, 2183 genes consisting of 1901 
protein-coding genes, 203 miRNAs and 24 long non-coding RNAs 
were curated to annotate the potentially metastasis-related genes.

The National Cancer Database is a nationally recognized database 
sponsored by the American Cancer Society and the American College 
of Surgeons. Hospital registry data are sourced for and collected 
from over 1500 facilities. The database contains over 34 million 
historical records and over 70% of newly diagnosed cancer cases in 
America. Based on the data from this database, the quality of care 
provided for cancer (metastatic) patients can be improved effec
tively upon further research. A study by Yang et al. [151] reports the 
prevalence of gaps in data capture and documentation in the Na
tional Cancer Database, leading to missing data. However, this can be 
mitigated by adequately capturing and documenting patients’ 
medical records.

Gene Expression Omnibus (GEO) database is a database of the 
National Center for Biotechnology Information (NCBI) [152]. It is a 
public functional repository for genomics data. Researchers can 
submit array and sequence-based data for accessibility to other re
searchers. Gene expression profiles can easily be downloaded using 
the available query tools. The repository contains about 4350 data
sets and about 4766100 samples.

The Cancer Imaging Archive (TCIA), funded by the Cancer 
Imaging Program, is a publicly available database of medical images 
of cancer. The image data are classified according to the disease, and 
image types, such as CT, MRI, digital histopathology, and image 
modality. Researchers can submit data, and published analysis re
sults for accessibility to other researchers [153].

The Hartwig Medical Foundation Database is a database that 
consists of the clinical and genetic data of metastatic cancer patients 
in the Netherlands. Whole Genome Sequencing is used for the 
generation of genetic data. According to Priestley et al. [154], it is the 
largest metastatic whole-genome cancer resource. The purpose of 
the database is to enable faster discovery of biomarkers and improve 
existing biomarkers for the effectiveness of treatments. It also aims 
to allow researchers to understand metastasis development and 
encourage tumor DNA-based personalized treatment for each pa
tient.

Project Data Sphere (PDS) is a repository that contains different 
cancer datasets, including metastatic cancer data of various body 
parts. The aim is to break down the barriers in sharing cancer clinical 
trial data. It is believed that sharing data and making them easily 
accessible to other researchers will ultimately benefit the patients 
who participate in these clinical trials. Data is generated from aca
demic medical centres, biopharmaceutical companies, and govern
ment organizations. The free and open-access platform aims to 
improve the speed of cancer trials, reduce cost, and improve the 
effectiveness of cancer treatments [63,155,156].

The UNC Breast Cancer Metastatic Database is the database es
tablished by the UNC Lineberger Comprehensive Cancer Center to 
monitor and track the evolution of metastatic cancer, pathology, 
treatments, and clinical trials. It consists of the record of metastatic 
breast cancer patients at the UNC Breast Center. Its use of data for 
research is permissible based on approvals.

The Metastatic Breast Cancer Project Data shares genomic, clin
ical, molecular and patient-record data of metastatic breast cancer 
patients via the cBioPortal web-based platform. The goal is to in
crease the speed of discovering and developing new treatment 
strategies. The generated data are already cleaned, and the database 
is updated as new patients are enrolled. The cBioPortal repository 
contains other metastatic cancer data for research purposes.

Side-Out Foundation Metastatic Breast Cancer Database captures 
data from studies sponsored by the foundation. The database with 
clinical trial numbers (NCT01074814, NCT01919749, NCT03195192) 
contains more than 700 data fields. It consists of NGS-based whole/ 
targeted exome sequencing generated genomic data, RNA micro
array or RNA Seq generated transcript analysis data, Reverse Phase 
Protein Microarray (RPPA) generated phosphoproteomic data. 
Patients are de-identified, and information such as treatment his
tory, demographics, pathological and clinical information, informa
tion about metastatic lesions, and outcome data are collected during 
the trials.

Other available metastatic cancer data include BIOGPS, a gene 
annotation web portal which is a repository containing data for lung, 
breast, brain and bone metastasis; The Southeast Netherlands 
Advanced Breast Cancer (SONABRE) Registry, a registry with clin
ical trial government registration number NCT03577197, based on 
the multi-centre study of advanced and metastatic breast cancer 
patients in the Netherlands; the Prostate Cancer Registry, containing 
a multi-centre collection of data of over 3000 metastatic castration- 
resistant prostate cancer patients from 16 countries. With a clinical 
government registration number NCT02236637, the data collected 
includes the treatment, baseline characteristics, survival outcome, 
and other necessary information [157]; Metastatic Colorectal Cancer 
Database contains about 1000 patient’s data in a structured and 
centralized way; and Colorectal Liver Metastasis Database (CLIMB), a 
clinical trial study data collected based on colorectal carcinoma 
patients with liver metastasis.

Generally, since most metastatic cancer data contain patients’ 
personal data, privacy policies, ethical data collection, and license 
agreements are usually involved. Usually, requests are subject to 
scrutiny, review, and assessment to ensure that the data is used 
according to the respective privacy policies.

O.O. Petinrin, F. Saeed, M. Toseef et al. Computational and Structural Biotechnology Journal 21 (2023) 2454–2470
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8. Summary and outlook

Cancer is a leading cause of death globally, and there has been a 
tremendous increase in new cancer cases over the years. More 
specifically, the primary cause of cancer-induced death is metastasis, 
which is responsible for over 90% of cancer mortality. Recently, 
several techniques have been developed to combat the menace of 
cancer. WIth a significant level of success, a compelling motivation 
for the application of ML stems from the need to develop non-in
vasive approaches for preoperative cancer diagnosis. Such an ap
proach reduces treatment cost and time, improving patient quality 
of life. This study reviews classical machine learning and deep 
learning adoption in metastatic cancer-related studies. It examines 
the potential of these computational methods in the early diagnosis 
of metastasis in cancer patients and the prediction of the survival 
outcome. It further x-rays their use in the evaluation of patients’ 
response to treatment, the need for discontinuation in case of ad
verse effects, and the impact of models built on racial/ethnic diverse 
populations.

In principle, in comparison to classical machine learning, deep 
learning is mainly used for image data. The feature extraction cap
ability of deep learning aids the development of better and more 
accurate predictive models. Although there were cases where clas
sical machine learning had better predictive accuracy than deep 
learning, deep learning remained the overall better technique, 
especially when the input data were associated with images. 
However, deep learning’s expensive computational power and 
complexity are important factors to be considered when using the 
approach. It is also a black-box model, which has limited interpret
ability. Thus, clinicians tend to be wary of it. Regardless, studies 
show that these computation tools are useful for the study of me
tastasis . In addition to the foregoing, another issue with existing 
data repositories is the lack of ethnic diversity. Along this line of 
enquiry, we saw that the outcomes of clinical trials had a certain 
skewness that does not give a complete picture of the state of cancer 
metastasis across ethnic populations. Consequently, we can foresee 
that the models built on these biased repositories may not be robust 
enough for worldwide implementations.

Moreover, explainable AI (XAI) is a budding concept towards 
navigating the hidden/blurry part of black-box models. Over time, 
the need to understand, interpret and explain the result of ML 
models has been recognized. Several approaches exist, and they are 
recommended for the implementation in metastasis research. One of 
such approaches used for image data is the Gradient-weighted Class 
Activation Mapping (grad-CAM) technique [158]. This technique is 
an improved version of CAM which uses the gradient of the target 
flowing to the final convolution layer, to produce coarse localization 
and highlight important regions. As a means of feature selection, 
[159] used grad-CAM with multilayer perceptron for the extraction 
of crucial variables . In a related manner, it can visualize specific ECG 
waves responsible for myocardial infarction [160]. It has also been 
shown to be better at localizing heatmap patterns compared to CAM 
and grad-CAM++ in the classification of sclerosis in brain MRI [161]. 
Due to the prominent use of image data in metastasis research, such 
tool for DL black-box is encouraged as it has been utilized in similar 
clinical researches [162–164]. Other tools that can be utilized for 
image-based model interpretability include D-RISE [165], DeepLIFT 
[166], and integrated gradients [167]. Two other methods include 
Local Interpretable Model-Agnostic Explanations (LIME) [168], and 
Shapley Additive Explanations (SHAP) [169], which is built on the 
concept of game theory. These methods can either provide global or 
local explanations. However, to unravel the DL black-box, there is 
usually a trade-off between performance and the level of explan
ability/interpretability [170].

As previously mentioned, the application of machine learning in 
metastasis is an emerging research area. It can be utilized in the Ta
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metastatic stage of cancer for various analysis including detection, 
distinguishing tumor types, treatment recommendation, and other 
prognosis aimed at longevity and improving life quality. In Table 1, 
we provide a detailed summary of published research works where 
ML were used to explore metastatic cancer data, including the re
sulting model performance and their perceived limitations. Our 
overall deduction is that many studies tend toward preoperative 
non-invasive procedures for the diagnosis and treatment of meta
static cancer. From our examination of these works, we can identify 
the areas of future research. Since most curated data are image- 
based, we opine that focus should be on developing resource-effi
cient algorithms. This could be through architectures that require 
less information extracted from tumor image for prediction. Another 
approach is to develop hybrid schemes that combine the low-cost 
throughput of ML with the detail-oriented, more accurate feature 
extraction feature of DL. Furthermore, an alternative technique that 
could be adopted is to find a suitable (light weight) replacement for 
the convolution operation in DL architecture. This is because the 
convolution kernel requires high computation power for its calcu
lations. Moreover, another persisting issue in the use of DL is the 
interpretability of its results. Unraveling its black box status will go a 
long way in providing insight into practical ways of tuning its 
parameters for better performance.

Consequently, we summarily show in Fig. 4 the current state of 
machine learning in metastatic cancer research, and areas that could 
be considered in future research. The future directions include ex
plainable AI (XAI), federated learning, quantum computing, transfer 
learning, and the adoption of a diverse population in the data used 
for training. Federated learning involves the training of algorithms 
across multiple decentralized servers and devices which hold local 
data samples without necessarily sharing them. Few papers 
[171–173] have implemented the use of federated learning for cancer 
research, and these papers are produced recently, which shows it is a 
budding area of research. Federated learning applied to real world 
dataset across multiple centers helps to train models on relatively 
large datasets, and a diverse population, while protecting patients’ 
privacy [171]. It has also shown superior performance compared to 
data from single institution [172]. However, according to [173], there 
is a risk of data leakage during training, which is undesirable. An
other important technique is transfer learning. It involves utilizing 
previously trained models as a starting point for a new model to 

perform a new task. This method has shown a possibility of good 
performance with medical image analysis [174], especially with 
small samples [175] which is common in medical image data. We 
also see that it has been used in some lymph node metastasis de
tection studies [174,176,177,175]. Considering the prevalence of 
image data in metastatic cancer research, a gradual shift towards 
transfer learning for faster and optimized model training is en
visaged. In addition to the aforementioned, quantum machine 
learning involving the application of quantum computing to ma
chine learning is projected to improve generalization even with few 
data [178]. This technique can be utilized to speed up computation 
and improve performance of analysis compared to some classical ML 
methods [179]. However, standardized quantum datasets are es
sential for analysis [180].

In summary, the information written above could help medical 
practitioners make more informed diagnostic decisions, while also 
helping patients choose suitable treatment options. With the need to 
address the increase in cancer-induced deaths with less invasive 
treatment options, the possibilities and prospects we have shown 
should convince research granting organizations and funding agen
cies of the continued viability of ML in cancer diagnosis and treat
ment. A cumulative effort in this direction would go a long way in 
stemming the continuous waves of cancer mortality.
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