
Muhammad Toseef is currently a PhD student in the Department of Computer science, City University of Hong Kong, Hong Kong SAR. His research interests
include bioinformatics, transfer learning and computational biology.
Olutomilayo Olayemi Petinrin is currently a PhD student in the Department of Computer science, City University of Hong Kong, Hong Kong SAR. Her research
interests include medical informatics, chemoinformatics and deep learning.
Fuzhou Wang is currently a PhD student in the Department of Computer science, City University of Hong Kong, Hong Kong SAR. His research interests include 3D
Genomics, epigenetics and machine learning.
Saifur Rahaman is currently a PhD student in the Department of Computer Science, City University of Hong Kong, Hong Kong SAR, and a Visiting Graduate
student at the Broad Institute of MIT and Harvard, Cambridge, MA, United States. His research interests include cancer genomics, cancer detection, applied
machine learning to bioinformatics and computational intelligence.
Zhe Liu is currently a PhD student in the Department of Computer Science, City University of Hong Kong, Hong Kong SAR. Her research interests include cancer
genomics, bioinformatics and deep learning.
Xiangtao Li is a professor in the School of Artificial Intelligence, Jilin University, Jilin, China. His research interests include bioinformatics, computational biology
and evolutionary data mining.
Ka-Chun Wong assumed his duty as an associate professor at City University of Hong Kong, Hong Kong SAR. His research interests include bioinformatics,
computational biology, evolutionary computation, data mining, machine learning and interdisciplinary research. He is merited as the associate editor of Bio Data
Mining in 2016. In addition, he is on the editorial board of Applied Soft Computing since 2016. Remarkably, he has solely edited two books published by Springer
and CRC Press, attracting 30 peer-reviewed book chapters around the world.
Received: March 16, 2023. Revised: June 4, 2023. Accepted: June 20, 2023
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(4), 1–16

https://doi.org/10.1093/bib/bbad254
Advance access publication date 14 July 2023

Problem Solving Protocol

Deep transfer learning for clinical decision-making
based on high-throughput data: comprehensive
survey with benchmark results
Muhammad Toseef, Olutomilayo Olayemi Petinrin, Fuzhou Wang, Saifur Rahaman, Zhe Liu, Xiangtao Li and Ka-Chun Wong

Corresponding authors. Xiangtao Li, Professor in the School of Artificial Intelligence, Jilin University, Jilin, China. Email: lixt314@jlu.edu.cn; Ka-Chun Wong,
Associate Professor at City University of Hong Kong, Hong Kong SAR. Email: kc.w@cityu.edu.hk

Abstract

The rapid growth of omics-based data has revolutionized biomedical research and precision medicine, allowing machine learning
models to be developed for cutting-edge performance. However, despite the wealth of high-throughput data available, the perfor-
mance of these models is hindered by the lack of sufficient training data, particularly in clinical research (in vivo experiments). As
a result, translating this knowledge into clinical practice, such as predicting drug responses, remains a challenging task. Transfer
learning is a promising tool that bridges the gap between data domains by transferring knowledge from the source to the target
domain. Researchers have proposed transfer learning to predict clinical outcomes by leveraging pre-clinical data (mouse, zebrafish),
highlighting its vast potential. In this work, we present a comprehensive literature review of deep transfer learning methods for health
informatics and clinical decision-making, focusing on high-throughput molecular data. Previous reviews mostly covered image-based
transfer learning works, while we present a more detailed analysis of transfer learning papers. Furthermore, we evaluated original
studies based on different evaluation settings across cross-validations, data splits and model architectures. The result shows that
those transfer learning methods have great potential; high-throughput sequencing data and state-of-the-art deep learning models
lead to significant insights and conclusions. Additionally, we explored various datasets in transfer learning papers with statistics and
visualization.
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INTRODUCTION
With the advent of high-throughput sequencing (HTS) technolo-
gies, the field has been transformed significantly, which has made
it possible to gather vast amounts of data at the single-cell level
[1–3]. In particular, high-throughput molecular data are generated
from omics-based technologies, such as genomics, proteomics,
transcriptomics, epigenomics and metabolomics [2, 4]. With
the help of multi-omics data, classical machine learning and
deep learning methods made significant advances in biomedical
research and precision medicine, overcoming key problems that
were previously considered a big challenge [5]. High-throughput
data analysis can be broadly categorized as whole genome

sequencing (WGS), whole exome sequencing (WES), RNA-seq,
ChIP-seq and microarray, all of which help stakeholders in the
diagnosis, prognosis, classification and treatment of human
and animal diseases. We are not discussing these sequencing
methods in detail, but high-throughput molecular data analysis
can answer critical questions, such as the genomic locations of
mutations responsible for a particular disease [6, 7].

Although the availability of biomedical data has facilitated
the development of state-of-the-art machine learning models,
however, one of the assumptions in machine learning is the avail-
ability of sufficient training data for robust model performance.
Unfortunately, in some cases in human health informatics,
machine learning models performance is hindered by the unequal

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/4/bbad254/7224398 by C

ity U
niversity of H

ong Kong user on 26 July 2023



2 | Toseef et al.

distribution of training data, creating data discrepancies across
domains [8, 9].

In vivo experiments for humans are challenging due to ethical
considerations [10] or limited availability of tissues [11, 12], mak-
ing it difficult to obtain data. To overcome these challenges, novel
deep transfer learning methods have been developed, achieving
breakthrough results in knowledge transfer from source domain
to target domain using high-throughput data [13–16]. These stud-
ies mostly used preclinical data (Mus Musculus) in the source
domain to transfer the learned knowledge and representations to
the clinical (Homo sapiens) target domain.

Taxonomy of transfer learning algorithms
Transfer learning has been adapted with different names, such
as knowledge transfer, multi-task learning, domain adaptation,
life-long learning and context-sensitive learning [17]. Transfer
learning helps to transfer the learned representation or features
from a source domain to a predictive function in the target
domain considering the following three points: (i) what to transfer,
(ii) when to transfer and (iii) how to transfer [18]. The first
question ‘what to transfer’ significantly sorts out the critical
information about the transfer learning task [19]. With the
condition of labeled or unlabeled training data in the source and
target domains, and whether the source and target tasks are
related or different, transfer learning algorithms can be defined
into three major paradigms [18]. The three main scenarios of
transfer learning on the basis of source and target domains
tasks and data availability are: (i) unsupervised transfer learning,
(ii) transductive transfer learning and (iii) inductive transfer
learning. The source and target domains, or source and target
tasks must have shared denominators to transfer the knowledge
to the predictive function in the target domain. Inductive and
transductive transfer learning use labeled data in the source
domain, while unsupervised transfer learning helps the clustering
and dimensionality reduction tasks with no labeled data either
in source or target tasks. In inductive transfer learning method,
we have labeled training data in target domain. Based on labeled
training data availability in source domain, inductive transfer
learning can be further categorized into two sub-domains: multi-
task learning and self-taught learning. On the other hand,
transductive transfer learning helps to solve the problems with
labeled training data only in the source domain. In particular,
domain adaptation is an important sub-domain of transductive
learning where we have the same task but in different domains.

Importance of deep transfer learning in human
health informatics
Deep transfer learning has become a crucial tool in human health
informatics due to its ability to leverage existing knowledge to
improve the accuracy and reliability of computational models. In
particular, it has shown great potential in addressing the chal-
lenges of limited training data and data inequality in biomedical
research and clinical practice. The use of deep learning methods
in in vivo experiments remains challenging due to data scarcity
and financial constraints; Ravi et al. [20] outlined the problem of
limited disease-specific data.

One of the key benefits of transfer learning is its capability of
knowledge transfer from one task (with enough training data) to
another (with limited data). This allows the reuse of previously
learned features, resulting in more reliable, accurate and efficient
models. For human disease informatics, it is critical to train the
models with accurate data to transfer the shared denominators
to the predictive function [21, 22]. Transfer learning has shown
great impact in clinical research and health informatics in recent

years for image-based models, time series data, text, tabular and
audio-based applications [23].

Another important application of deep transfer learning in
human health informatics is the ability to overcome the chal-
lenges of data inequality. This is particularly important for rare
diseases and multiple ethnic races [8], with limited data available
for training computational models. Deep transfer learning can
help to overcome this challenge by leveraging existing knowledge
and data from related diseases or populations [24], improving the
accuracy and reliability of models. The COVID-19 pandemic has
highlighted the importance of deep transfer learning in human
health informatics. During the pandemic, deep transfer learning
has been used to develop computational models for image-based
diagnosis [25–28], predicting disease severity and patient out-
comes and developing personalized treatment recommendations
[29].

TRANSFER LEARNING STUDIES
In this section, we have explained the survey papers according
to the sub-paradigms of transfer learning (Pan and Yang [18]).
We have summarized transfer learning methods covered in our
survey in Table 1, and statistics of published high-throughput
studies with machine learning methods in the last five years
has been shown in Figure 1. Furthermore, we have shown the
word cloud representation from the abstracts of published articles
covered in our survey, as shown in Figure 2. The word cloud shown
in Figure 2 is generated with the top 30 words; and the word size
represented the frequency of any word. For article search and
selection, we followed the standard Systematic Literature Review
(SLR) steps including (i) research questions formulation, (ii) search
strategy, (iii) article selection, (iv) quality assessments and (v)
data extraction (as shown in Supplementary Materials section 1).
We searched from four biomedical databases including Web of
Science (WOS), PubMed, Medline and Scopus with these keywords:
gene expression, single-cell RNA sequencing (scRNA-seq), RNA-
seq, transcriptomics, domain adaptation and transfer learning. A
detailed explanation has been given in Supplementary Materials.

Unsupervised transfer learning
Feature representation such as latent variables (LV) is one of the
answers of ‘what to transfer’ in transfer learning. In similar settings
of unsupervised transfer learning, Taroni et al. [24] presented the
pathway-level information extractor method called MultiPLIER.
The main focus of the study is to learn predictive function (to iden-
tify perturbed molecular processes across different organs sys-
tems) in the target domain for rare human diseases. The authors
utilized a large compendium of publicly available gene expression
dataset, Recount2 [30]. The feature representations of correlated
genes were calculated with matrix factorization [31], to find the
associated patterns of LV with known pathways. The learned fea-
tures from the source domain were then projected onto the target
domain of rare disease scRNA-seq data. The authors employed the
PLIER [31] R package and the limma (Linear Models for Microarray
Data) Bioconductor package for differential expression analysis.
They selected subsets of the recount2 data, ranging from 500 to 32
000 samples, to train the PLIER. The authors observed that training
MultiPLIER with a larger sample size led to better performance.
The limitations of MultiPLIER include the potential for limited
generalizability to specific tasks and datasets, as well as the need
for careful evaluation of its performance. Additionally, it may
not capture all relevant biological information because of the
relatively small dataset in the target domain.
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Table 1. Recent Transfer Learning studies for high-throughput molecular data for human disease informatics

Method Description Pros Cons References

MultiPLIER The authors trained an unsupervised TL model to
identify perturbed molecular processes in complex
human disease across organ systems. They used a
large publicly available dataset Recount2, for
pre-training of transfer learning model in the source
domain. (Software is available at https://github.com/
greenelab/multi-plier)

It can be useful in case of rare
diseases where data are too
limited

It may not capture all
information because of
small target domain
datasets

Cell Systems [24]

projectR The authors used the scRNA datasets to define
latent spaces in the source domain with mouse
retina data. The proposed method projectR used
transfer learning and evaluate the latent spaces in
source domain using human retina data. (Software is
available at https://github.com/genesofeve/projectR)

This method may help in new
cell annotation, cross-species
analysis, and linking genomic
regulatory and transcriptional
signatures

The efficacy of the
projection method needs
further evaluation in
other orthogonal and
non-orthogonal
projection methods

Cell Systems [15]

pro-
jectR_ICI

To identify transcriptional changes in tumors across
different datasets via immunotherapy responses.
The authors found the NK cell activation in mouse
and human tumors in anti-CTLA-4 treatments (Data
and software is available at https://github.com/
edavis71/projectR_ICI)

The proposed matrix
factorization can detect the
signature of NK cell activation
without any need for clustering,
differential expression analyses,
or additional technologies in
response to treatments

Expression of CLTA-4 in
NK cells is disputed in
both mouse and human
cells and further
explanations are
required

Genome
Medicine [16]

FIT The authors created 170 CSPs from disease and
control datasets (for 28 diseases) to predict human
effect size from mouse effect size and then used
these predictions to find human gene effect from
target data in the target domain. (Software is
available at https://github.com/shenorrLab/FIT.
mouse2man)

As compared with the direct
exploration of mouse data, FIT
can detect 20-50% more relevant
genes

The training data
compendium should
have a large training set
of human data for a
specific disease(s)

Nature Method
[32]

CaSTLe The proposed model is used for the classification of
single cells from scRNA-seq datasets using transfer
learning. The model was trained on previously
labeled data by selecting informative features. The
classification task was done using the XGBoost
classifier. (Data and software is available at https://
github.com/yuvallb/CaSTLe)

The main strength of this study is
the scalability and enhanced
performance on larger and
imbalance datasets as compared
with benchmark models

Cannot detect novel cell
types, technical
variability between
datasets

PLOS ONE [37]

TF-Binding-
Matrix

A two-step (pre-training and fine-tuning) transfer
learning for TF binding using a CNN model (Software
is available at https://github.com/wassermanlab/TF-
Binding-Matrix)

As compared with previous
methods, this method is trained
the TF with the same binding
mode using transfer learning

It may not be
computational effective
and the model
performance can still be
optimized

Genome Biology
[33]

scJoint This study adapted the domain adaptation task in
transfer learning to transfer label knowledge from
the source domain (RNA-labeled data) to the target
domain (scRNA-seq, ATAC-seq unlabeled data).
(Software is available at https://github.com/
SydneyBioX/scJoint)

Proven more effective than
previous studies, even in the case
of highly complex data where
important biological information
was mixed with technical
variations

If extended to other
epigenomic data, a
separate encoder
development will be
required

Nature
Biotechnology
[14]

BERMUDA This study presented a novel batch effect removal
using deep autoencoders using transfer learning for
multiple batches of scRNA data from various cell
populations. This helped to transfer information
among these batches by amplifying batch signals.
(Software is available at https://github.com/txWang/
BERMUDA)

BERMUDA can effectively remove
batch effects even in cases across
vastly different batches among
cell populations

Clustering algorithm is
not robust and only
tested on small-scale
scRNA-seq datasets

Genome biology
[13]

trVAE The transfer of conditions across domains is
achieved by adapting a transfer variational
autoencoder. The trVAE has been adapted to two sets
of problems: smiling condition images for males and
females and cell type infections in source and target
domains. (Software is available at https://github.
com/theislab/trvae)

It can be useful and applicable to
multimodal methods in
biomedical research

Two gene sets from
different species in
source and target
domains

Bioinformatics
[38]

XGSEA CROSS-species gene set enrichment with a three-step
transfer learning approach was proposed. They used
five regression and one classification method to
evaluate the model performance using four datasets
in source and target domains. (Software is available
at https://github.com/LiminLi-xjtu/XGSEA)

It can provide more robust and
focused results as compared with
other approaches for the
prediction of enriched pathways

They used traditional
machine learning
methods for regression
and classification tasks,
which may cause model
underperformance

Briefings in
Bioinformatics
[39]

(continued)
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Table 1. Continued

Method Description Pros Cons References

PRECISE This is a domain adaptation transfer learning study
to transfer the drug response predictors from
pre-clinical models to human tumors. To train the
predictor, they used the GDSC1000 dataset, while
human datasets were adapted from TCGA, using
breast and multiple melanoma cancers. (Software is
available at https://github.com/NKI-CCB/PRECISE)

Performance comparison of
known biomarkers in skin cancer
and breast cancer showed a
strong association between
biomarkers and relevant drugs

Only available for gene
expression data, so a
multi-omics approach
could fill this gap

Bioinformatics
[40]

AITL An adversarial inductive transfer learning method
for input and output space adaptation for
pharmacogenomics. The model consisted of a
multi-task deep learning model to address the
source domain discrepancies and predicted the
target domain’s drug response. (Software is available
at https://github.com/hosseinshn/AITL)

The first approach of adversarial
and inductive transfer learning
by adapting both input and
output spaces and outperforming
recent state-of-the-art methods

The pharmacogenomics
patient data for drug
responses is not enough,
and they only consider
the gene expression data

Bioinformatics
[41]

ssNN A semi-supervised transfer learning for
mouse-to-human genomic insight translation for 36
human disease transcriptomics case studies.
(Software is available at https://ww2.mathworks.cn/
matlabcentral/fileexchange/69718-semi-supervised-
learning-functions)

successfully predicted human
pathways and phenotype
associated-genes for inter-species
molecular translation, with no
need for predicted humans labels

Mostly suitable for
regression problems;

PLoS
Computational
Biology [36]

TransComp-
R

Cross-species knowledge transfer, additionally with
different omics types, such as transcriptomics to
proteomics. (Software is available at https://ww2.
mathworks.cn/matlabcentral/fileexchange/77987-
transcompr)

Transfer knowledge from one
omic data to a different omic
data

The main issue is that is
only applicable to
homologous
mouse-to-human
proteins/genes

Science
Signaling [42]

scDEAL Prediction of drug response in high throughput data
using deep transfer learning, with a domain-adaptive
neural network using bulk RNA data as source data
to learn and predict drug responses in the target
domain. (Software is available at https://github.com/
OSU-BMBL/scDEAL)

Intelligent model structure to
maintain the heterogeneity of
single cell while training the
model using scRNA and bulk
RNA data

Because of the
unavailability of
drug-treated mouse
data, it is difficult to
evaluate and optimize
the cross-species model
reliability

Nature Commu-
nications
[43]

CaSee pan-Cancer Seeker (CaSee) is proposed to
discriminate normal and cancer cells in scRNA data.
They trained the model on 18 types of pan-cancer
bulk RNA-seq data. For training purposes, they
adapted a capsule network with transfer learning.
(Software is available at https://github.com/
yuansh3354/CaSee)

Shown better performance
against copy number variations
(CNVs) and other existing
methods, and successfully
differentiated tissues, cell lines
source, and xenograft cells

Feature space and
sample needed to user
selected before model
training

Oncogene [44]

In general, analysis of scRNA-seq to learn the meaningful rep-
resentations is a challenging task because of the low-dimensional
latent space. Recently, Stein-O’Brien et al. [15, 16] developed pro-
jectR and scCoGAPS to address this issue using transfer learn-
ing. Firstly, they used the CoGAPS (Coordinated Gene Activity
in Pattern Sets) package from Bioconductor to learn the latent
spaces from sparse scRNA-sec data of mouse retina. The learned
projections were transferred to the target task using both scRNA
and bulk RNA datasets for predictions in human data. The target
domain consisted of multiple datasets, including developing (age,
cell type, sex, disease status) the human brain cortex and devel-
oping mouse midbrain, datasets details are provided in Table 2.
In the source task, latent spaces were learned using dimensional-
ity reduction with UMAP (Uniform Manifold Approximation and
Projection) (https://umap-learn.readthedocs.io/en/latest/). They
implemented the software using R and Scanpy (https://scanpy.
readthedocs.io/en/stable/). Two years later, Davis-Marcisak et al.
[16] developed an unsupervised transfer learning extended study
of projectR, projectR-ICI, to identify the nature killer (NK) cells
activation in human tumors using a source domain task for anti-
CTLA-4 treatment respondents. The authors chose pre-clinical

(mice-scRNA) as source domain data and clinical (human-scRNA,
bulk RNA, cyTOF) datasets for target domain data. Gene regula-
tions and cell types were learned with matrix factorization using
UMAP in source task. To transfer these feature representations
to the target predictive function, they used projectR using an
independent human tumor dataset in the target task. The authors
found positive results with NK cell activation in source mouse
data treated with anti-CTLA-4 and then validated it in human
tumor (metastatic melanoma) data in the target task.

Normand et al. (2018) [32] proposed a novel method called
Found in Translation (FIT) to predict relevant genes associated
with 28 human diseases (target domain), using both mouse
RNA-seq data and human mouse-model disease-versus-control
datasets (source domain). The authors collected the source and
target datasets from Gene Expression Omnibus (GEO) datasets,
including microarray and RNA data, to create 170 cross-species
pairings (CSPs). For each CSP, they employed a lasso regression
model to fit α and β parameters for all genes using a linear
model. FIT used a manually annotated 170 microarray and
RNA-seq datasets (for every GEO dataset, the authors considered
each sub-dataset as a new dataset). To predict the translation

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/4/bbad254/7224398 by C

ity U
niversity of H

ong Kong user on 26 July 2023

https://github.com/NKI-CCB/PRECISE
https://github.com/hosseinshn/AITL
https://ww2.mathworks.cn/matlabcentral/fileexchange/69718-semi-supervised-learning-functions
https://ww2.mathworks.cn/matlabcentral/fileexchange/69718-semi-supervised-learning-functions
https://ww2.mathworks.cn/matlabcentral/fileexchange/69718-semi-supervised-learning-functions
https://ww2.mathworks.cn/matlabcentral/fileexchange/77987-transcompr
https://ww2.mathworks.cn/matlabcentral/fileexchange/77987-transcompr
https://ww2.mathworks.cn/matlabcentral/fileexchange/77987-transcompr
https://github.com/OSU-BMBL/scDEAL
https://github.com/OSU-BMBL/scDEAL
https://github.com/yuansh3354/CaSee
https://github.com/yuansh3354/CaSee
https://umap-learn.readthedocs.io/en/latest/
https://scanpy.readthedocs.io/en/stable/
https://scanpy.readthedocs.io/en/stable/


Transfer learning for clinical prediction | 5

Figure 1. (a) A statistical representation of literature published in the last 5 years for gene-expression data with different computational methods; each
search query has method name in the title and keywords in all fields. The overall results are retrieved from Web of Science (WOS), PubMed, Medline
and Scopus (DL: deep learning, ML: machine learning, TL: transfer learning.) (b) a bar plot showing the total number of publications every year for all
methods combined. (Note: The year 2022 includes the publications until December 2022 and overall comparison shows the gap significant gap between
transfer learning studies and deep/machine learning works in the past 5 years)

Figure 2. A word cloud based on the published transfer learning papers
for high-throughput data

from mouse to human, the authors trained a support vector
machine (SVM) model, where principal component analysis (PCA)
was performed on mouse gene expression data in the source
domain. The classifier was trained using the hold-out strategy,
where authors split the 80% data as training data and 20% data
as test data. Furthermore, the first 50 principal components were
provided as input to the SVM model, capturing more than 80%
variation. The limitation associated with FIT is the quality of
the reference compendium used to train the model. The authors
compiled a dataset of 170 CSPs for 28 different diseases, but it is
possible that these pairs are not representative of the full range
of human diseases. In addition, the quality of the training data is
dependent on the quality of the original studies, which may vary
in terms of sample size, experimental design and data analysis
methods.

A multi-task learning model is proposed by Novakovsky et al.
[33] where authors used transfer learning to predict transcription
factor (TF) binding sites in DNA sequences based on position
weight matrices of the TF binding motifs. The authors adapted
a two-step strategy of pre-training and fine-tuning for TF binding
prediction in the target domain. The authors used the ChIP-seq
peaks datasets from ReMap [34] and UniBind [35] studies as source

data for TF binding events. To predict the TF binding predic-
tion, a convolutional neural network (CNN) was adapted with
three convolutional layers and two fully connected layers. The
overall performance of two-step transfer learning was evaluated
using the area under the precision-recall (AUCPR) curve. One
of the limitations mentioned by the authors is the dependency
on the quality and quantity of ChIP-seq data available for a
particular TF. If there are only a few ChIP-seq peaks available,
the model may not perform well. The authors suggested several
steps to improve the performance of the model, including pre-
training a larger multi-model with representative TF from each
binding mode and fine-tuning the model with different learning
rates.

After 1 year of the previous study in 2019, snNN [36], Brubaker
et al. proposed a new transfer learning method Trans Comp-R,
for the prediction of treatment (with infliximab) resistance to
inflammatory bowel disease (IBD). The proposed study is based
on the previous attempt by the authors for the transfer of cross-
species knowledge. Additionally, this method added the novelty
of the adaption of one data space to another, such as transcrip-
tomics to proteomics. In the source domain, they selected labeled
human transcriptomics data to learn the corresponding mouse
proteomics data for responsive or non-responsive phenotypes in
humans. During the first training step, the human gene expres-
sion data were provided as input to find the associated genes for
the responder phenotype. After this training step, they provided
the mouse proteomics data for homologous human genes found
in the previous step. Then they performed the PCA on these genes.
The next step was to project the human transcriptomic data into
the PCA space to perform a regression task against the human
responder phenotype. This prediction enabled the finding of new
mouse proteins to help human phenotype prediction. After these
experiments, the model predicted a collagen-binding integrin to
be involved in resistance to treatment.
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Table 2. Source and target domains datasets description

Method Key datasets with organism Reference

Source domain Target domain

MultiPLIER Large public data compendium comprising
multiple experiments, tissues, and biological
conditions.
Figsharelink, https://github.com/greenelab/
rheum-plier-data

Human
(E-GEOD-65391, E-GEOD-11907,
E-GEOD-49454, E-GEOD-39088,
E-GEOD-72747, E-GEOD-78193,
E-GEOD-61635, E-MTAB-2452,
GSE119136, GSE104948,
GSE37382, GSE37418)

[24]

projectR Mouse GSE118614 https://github.com/gofflab/
developing_mouse_retina_scRNASeq

Human GSE104827, GSE104276, Mouse, Human, and Stem
Cells GSE76381

[15, 51]

projectR ICI Mouse (GSE119352) Human (GSE120575, GSE139249) [16, 52]
FIT Human and Mouse (GitHublink) Human (Microarraysample, RNAseqsample) [32]
CaSTLe∗ Mouse (GSE59114, GSE81682), (Mouse and Human

(GSE63473))
Human (EMTAB5061 GSE81608) [37]

TF-Binding-Matrix Human (GitHublink) Human (Alldata) [33]
scJoint Mouse: scRNA https://tabula-muris.ds.czbiohub.

org/, sci-ATAC-seq Atlas https://atlas.gs.
washington.edu/mouse-atac/

Human (scRNAGSE156793, sci-ATAC-seq3GSE149683) [14]

BERMUDA Human and Mouse GSE84133 Human (GSE85241, E-MTAB-5061, PBMC PBMC10
xGenomicssupport), Human and Mouse GSE84133,

[13]

trVAE Human (Alldatasets) Human (Authorspreprocesseddatasetsfromotherstudies) [38]
XGSEA Mouse (Embryonic development (GSE44183), Brain

cancer (GSE38591), Ovarian cancer (GSE5987),
Zebrafish (Melanomas GSE83399))

Human (Embryonic development (GSE44183), Brain cancer
(GSE45874), Ovarian cancer (GSE6008), Melanomas
(GSE83343))

[39]

PRECISE Mouse (The cell lines dataset GDSC1000,
ThePDXdataset)

Human (TCGA [53, 54]) [40]

AITL Human (GDSCCelllines) Human (GSE55145, GSE9782-GPL96, GSE18864, GSE23554,
GSE25065,PDX [55] TCGA [56])

[41]

ssNN Mouse (GSE7404, GSE7404, GSE26472) Human and
Mouse (for augmented training set GSE5663)

Human (GSE37069, GSE36809, GSE3284, GSE13904) [36]

TransComp-R Mouse GSE95705 [57] Human (GSE16879) [42]
scDEAL Human (GDSC, CCLEcelllineexpressionprofile) Human (GSE117872, GSE112274, GSE140440, GSE140440

GSE149383), Mouse (GSE110894)
[43]

CaSee Human (TCGA & GTEx) Human (GSE116237, GSE150949,
HumanCellLandscape(HCL))

[44]

∗The authors used dataset pairs with source and target datasets, where they trained the model twice with same pair, once using dataset A and source data

Transductive transfer learning
A transfer variational autoencoder (trVAE) [38] is a transfer learn-
ing approach proposed for the transfer of conditions across differ-
ent domains. The proposed method is motivated where the target
domain of interest does not offer training data for a certain condi-
tion. It suggested using Maximum Mean Discrepancy (MMD) reg-
ularization to produce a more compact representation of a cross-
condition distribution that would otherwise display high variance
in the standard conditional variational autoencoder (CVAE), lead-
ing to more accurate out-of-distribution (OOD) prediction. The
goal is to generate new gene expression profiles that are condi-
tional on a categorical variable (such as cell type) and a latent vec-
tor and to handle OOD scenarios where the conditioning variable
is not present in the training data. The trVAE was evaluated on
several benchmark datasets (scRNA-seq), including a mouse brain
dataset and a human bone marrow dataset. To evaluate the model
performance, the authors benchmarked the proposed approach
against some standards methods such as CycleGAN [45], CVAE
[46], MMD-CVAE [47], MMD-regularized autoencoder [48], scVI [49]
and scGen [50]. They used Pearson’s correlation values for gene
expression variance and mean and showed that trVAE showed
better performance as compared with other published methods.
However, training the model can be computationally expensive

and it may not be scalable to extremely large datasets, which
can be improved by adapting more robust model architecture.
Furthermore, the model performance is highly dependent on
high-quality annotations for the cell types, which may not always
be available.

Gene set enrichment analysis (GSEA) study was done by Cai
et al. [39], where the authors proposed XGSEA (cross-species
GSEA); a domain adaption model to predict enrichment signif-
icant for phenotype analysis. They used four gene expression
datasets including embryonic, brain, ovarian and melanomas,
for both source and target species (mouse and human). The
XGSEA method solves this issue in three steps: firstly, running
GSEA over source gene sets; secondly, using pairwise similarities
among gene sets based on MMD and domain adaptation to project
gene sets from two species into a common latent space; thirdly,
training a regression model using to predict enrichment scores
and P-values for target gene sets. Overall, the proposed domain
adaptation model used MMD to project source and target gene
sets into a common latent space with affine mappings, and then
a regression model was trained on the source gene sets to predict
enrichment scores for the target genes set. They trained the
XGBoost classification model using 80% of training data, with 20%
held-out data. The authors compared the model performance
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with multiple naïve methods using four datasets, including
three mice to humans and one zebrafish to human. XGSEA
outperformed all naïve methods in terms of AUROC. However,
the model performance can be improved using more advanced
classifiers. Furthermore, the proposed method can be improved in
further directions, such as with robust domain adaptation model
by developing a more comprehensive null hypothesis for the gene
set enrichment score.

Following a domain adaption transductive transfer learning
approach [40], the authors used pre-clinical data (such as cell
lines and patient-derived xenografts) to transfer the predictions
of drug responses for the human tumor data in the target task.
The ability to predict the response of individual patients to anti-
cancer drugs is a critical step toward personalized medicine.
However, building reliable predictive models for drug response is
challenging due to the heterogeneity of tumors and the limited
availability of patient data. To overcome these challenges, the
authors proposed a domain adaptation approach called PRECISE
(Patient Response Estimation Corrected by Interpolation of Sub-
space Embeddings) that uses pre-clinical models (transcriptomic
data) to transfer knowledge to tumors. First, they used PCA to find
the common factors in pre-clinical models and human tumors
data. An additional step was performed to find the consensus
representation using principal vectors generated in the previous
step. They adapted a Ridge regression to build the model and
trained the model using the consensus representation to predict
the drug responses in human tumor data. However, they only used
the proposed study for transcriptomics data and it may not be
applicable to other types of predictors or omics data. This can be
further enhanced by integrating other types of omics data, such
as epigenetic or proteomic data.

Inductive transfer learning
Cell labeling in scRNA-seq data is done by cell clustering or
fluorescence-activated cell sorting, where both models have some
limitations [37]. To address these issues, a transfer learning cell
label classification model CaSTLe (Classification of single cells by
transfer learning) is proposed by Lieberman et al. [37]. For trans-
fer learning, six dataset pairs were created to train the model.
They trained an XGBoost classifier after the selection of common
genes across all single-cell datasets. For the multi-class scenario,
CaSTLe outperformed both a simple benchmark of highest mean
features and linear model classification and a more sophisticated
benchmark, the beta-Poisson single cell differentially expressed
genes and linear model classifier, in most cases. For the binary-
class scenario, CaSTLe achieved high performance with AUC val-
ues above 95% for 16 cell types and a sensitivity higher than 97%
for all 15 cell types that appeared only in the source dataset. The
high accuracy levels achieved for larger and more imbalanced
datasets demonstrated the method’s strength and robustness.
The CaSTLe has some limitations where it cannot detect novel
cell types, and it requires that the source and target datasets are
similar for the method to replace clustering effectively. Another
limitation is the technical variability between datasets requires
a more sophisticated approach for transfer learning, which can
be improved in future research. CaSTLe has not been tested on
transfer classification where the target dataset is only partially
labeled; this is also a promising research direction that could
potentially improve classification accuracy.

Lin et al. [14] proposed a domain adaptation transfer learning
approach, scJoint, for the integration of atlas-scale single-
cell RNA-seq and ATAC-seq (Assay for Transposase-Accessible
Chromatin) data using a neural network architecture. This

semisupervised transfer learning method learned the labels
from the multiple source datasets and transfer these learned
representations to ATAC-seq data in the target task. The proposed
model was trained in three steps: (i) joint dimension reduction of
scRNA and scATAC-seq data, (ii) cell label transfer using K-nearest
neighbors and (iii) joint training with transferred cell labels from
Step 2. The authors evaluated the scJoint from three different
perspectives: (i) joint embedding evaluation, (ii) transferred label
accuracy and (iii) evaluation with run time. For joint embedding
evaluation, they calculated the Silhouette coefficient for each
cell with two groups: modality silhouette coefficient and cell-
type silhouette coefficient. They also trained the scJoint with
complete scRNA-seq and scATAC-seq data, with 433 695 and 656
074 cells, respectively. Additionally, while scJoint is applicable to
paired data, it has been designed for unpaired data, and adapting
it to paired data during training could potentially enhance its
performance on this type of data. Although the results are stable
with respect to the choice of cosine similarity loss (main tuning
parameter), other optimization details, such as the number of
hidden nodes in the architecture, can also be considered tunable.

The batch effect can be defined as variations in the gener-
ated high-throughput data due to multiple factors [58], including
technical variations and different experimental conditions, which
can ultimately result in inaccurate and inconclusive findings. To
address this issue, Wang et al. [13] proposed an unsupervised
deep transfer learning approach called BERMUDA (Batch Effect
ReMoval Using Deep Autoencoders) that utilizes scRNA-seq data
from various batches and different cells. BERMUDA leverages an
autoencoder to remove batch effects across different batches by
identifying similar clusters in input data (multiple batches) and
aligning cell populations. The authors used scRNA-seq data in
the source task to find low-dimensional data representations. A
graph-based clustering algorithm was then applied to different
types of cells among multiple batches (figure 1 in [13]), fol-
lowed by the application of a Spearman correlation-based method
called MetaNeighbor to identify similar clusters among differ-
ent batches. Once clusters were identified, an autoencoder was
trained on unaligned cell clusters. UMAP visualization was used
to cluster cell types from different batches. To evaluate the perfor-
mance of BERMUDA, the authors compared it with various meth-
ods, including Seurat v2 [59], Seurat v3 [60], scVI [49], mnnCorrect
[61] and BBKNN [62], using four scRNA datasets, each with two
batches. However, some limitations of the proposed model include
the use of more advanced clustering algorithms, as KNN may not
handle large scRNA datasets with speed and accuracy, such as
[63]. Future research may address this limitation.

Sharifi-Noghabi et al. [41] proposed a novel transfer learn-
ing method ‘Adversarial Inductive Transfer Learning (AITL)’ to
address the output and input space discrepancies between pre-
clinical and clinical datasets. AITL consists of four components:
a deep neural network with a feature extractor, a multi-task
learning sub-network and discriminators to reduce domain dis-
crepancy using adversarial learning (further explained in Sec-
tion 3). The authors evaluated the model performance using the
area under the precision-recall curve (AUPR) and area under the
receiver operating characteristic curve (AUROC) with state-of-the-
art transfer learning methods (ProtoNet [64], ADDA [65]) and phar-
macogenomics datasets (bladder, lung, kidney, breast and prostate
cancer patients). The authors performed 3-fold cross-validation,
where in source samples two folds were used as training and
one fold as validation; similarly, in the target sample two folds
were used as training and one fold as validation. Although the
currently used cell lines datasets train machine learning models
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for other cell lines or patient datasets [40, 66–68], they may
not contain the identical distribution even with the same set of
genes. Because of this data discrepancy in the source and target
domain, an efficient computational model is difficult to train.
Another limitation of AITL includes the small size of the patient
datasets with drug response due to privacy and/or data sharing
issues.

In a semi-supervised transfer learning model (transductive TL)
[36], the authors proposed ssNN (semi-supervised neural net-
work), for pathway and gene expression analysis using multiple
mouse datasets in the source domain to human disease pre-
diction (phenotype prediction) in the target domain. The source
and target gene expression datasets were downloaded from GEO
for inflammatory diseases. The source data have either ‘sick’
or ‘healthy’ labels, and they constructed 36 mouse-to-human
pairs. They applied multiple machine learning methods such as
SVM, KNN, Random Forest and neural networks. For the models’
evaluation, the human label prediction performance was mea-
sured by precision and recall. The proposed method ssNN was
first trained on labeled mouse data to predict the human labels
from provided human gene expression data. After getting human
labels, the authors get an augmented training dataset from mouse
and human data, they used the human samples from the last step
with the highest confidence. The authors adapted the retraining
strategy on human data and get the new human labels with
the highest confidence, then these samples were again used for
augmented data with mouse expression data. They repeated the
training loop until all human label data were used for augmented
set generation. Overall, this strategy is only applicable to classifi-
cation tasks, and it cannot be used for regression analysis.

After 1 year of the previous study in 2019, snNN, Brubaker
et al. [36] proposed a new transfer learning method Trans Comp-
R, for the prediction of treatment (with infliximab) resistance to
IBD. The proposed study is based on the previous attempt by the
authors for the transfer of cross-species knowledge. Additionally,
this method added the novelty of the adaption of one data space
to another, such as transcriptomics to proteomics. In the source
domain, they selected labeled human transcriptomics data to
learn the corresponding mouse proteomics data for responsive or
non-responsive phenotypes in humans. During the first training
step, the human gene expression data were provided as input
to find the associated genes for the responder phenotype. After
this training step, they provided the mouse proteomics data for
homologous human genes found in the previous step. Then they
performed the PCA on these genes. The next step was to project
the human transcriptomic data into the PCA space to perform
a regression task against the human responder phenotype. This
prediction enabled finding new mouse proteins to help human
phenotype prediction. After these experiments, the model pre-
dicted a collagen-binding integrin to be involved in resistance to
treatment.

In a recent study by Chen et al. in 2022 [43], the authors
developed scDEAL (single-cell Drug rEsponse AnaLysis) using deep
transfer learning and adapting a Domain-adaptive Neural Net-
work (DaNN) to predict drug response at the single-cell level. They
used bulk RNA-seq data in source domain and used the trained
model to predict responses in the target domain using single-cell
data. The overall framework consists of five steps including (1) a
denoising autoencoder (DAE) to extract the bulk features, (2) an
encoder model to predict drug responses, (3) a second denoising
autoencoder to extract single cells features, (4) DaNN used as a
deep transfer learning model to derive the feature extractor at
the single-cell level and (5) transfer the learned model and drug

response prediction in single-cell data. The authors split the train-
ing data with hold-out strategy as 64%, 16% and 20% for training,
validation and testing, respectively. They used precision, recall, F1-
score, AUROC, AMI and ARI scores to evaluate the model perfor-
mance. They trained scDEAL with nested 10-fold cross-validation;
for each outer training fold, 90% data were used for training in
inner 10-fold cross-validations. The authors adapted Ridge and
ElasticNet regression in their model, and Pearson correlation was
used to evaluate the predictor performance. The current domain
adaptation model in scDEAL has been implemented using only
transcriptomics data in the source and target domains, so the
future direction of this study can be implemented with multi-
omics data.

Another transfer learning application, pan-Cancer Seeker
(CaSee), has been published in 2022 by Sh et al. [44]. The proposed
model discriminates the normal and cancer cells using scRNA-
seq as target domain data, while bulk RNA-seq as source domain
data. They used a capsule network based on a 2D CNN for model
training. The authors claimed this is the first transfer learning
method for normal/cancer cell discrimination and has higher
efficacy than other methods, such as copy number variation.
First, they created a shared feature space from scRNA-seq and
bulk RNA-seq data (candidate reference data) to generate output
reference data to train the CaSee model. To train the model, the
candidate reference data (bulk RNA-seq) were split into 80%, 10%
and 10% for training, validation and testing, respectively. This
candidate data count matrix was then fed to an encoder model
with one fully connected layer with ReLU, and two Conv2d layers,
then the output feature map was passed capsule encoder. To
evaluate the CaSee performance, they applied the Wilcoxon test.
The authors showed that the proposed model discriminated the
normal and cancer cells with 96.69% accuracy. The one major
shortcoming of this model is that candidate reference data genes
are determined and unchangeable, so in case of low feature space
in scRNA-seq data, the number of intersection genes remains low
to create the output reference data.

We have summarized the source/domain data and high-
throughput data type for transfer learning studies in Figure 3.
Furthermore, the nature of transfer learning methods, strategy
and evaluation methods have been shown in Figure 4. Moreover,
we arranged the key information such as transfer learning task,
source task and input, target task and output, machine learning
methods and evaluation metrics in Table 6.

BENCHMARK RESULTS
We have benchmarked the selected transfer learning papers,
including AITL [41], scJoint [14] and BERMUDA [13]. Firstly, we
evaluated these papers with original model settings and then con-
ducted experiments under different conditions, such as training
data split, K-fold cross-validation, hyperparameter settings and
various model architecture. We used the official source code for
the selected studies and followed the instructions by the authors
for each original experiment. The purpose of these experiments
is to provide tutorials for transfer learning methods, as previous
transfer learning reviews for high-throughput data have over-
looked these analyses. The comparison source codes are given at
the GitHub (https://github.com/mtoseef99/transfer-learning-for-
geneExp) repository to follow.

In AITL[41], the authors proposed a space adaptation model for
the pharmacogenomics adaptation from input to output space.
We evaluated the performance of AITL with different sets of
experiments; details have been shown in Supplementary Table
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Figure 3. An alluvial plot showing the source and target data species for studies published in last 5 years, with the type of sequencing data: scRNA
or bulk RNA (Large data compendium, recount2, contains data from multiple larger datasets, tissues and experiments from MultiPLIER. The original
recount2 data compendium has RNA-seq and exon counts from 2041 different studies.)

S1. First, we downloaded the author’s pre-processed data and
created the new data splits for 5-fold and 10-fold for cross-
validation experiments. Then we performed the experiments with
the original model setting for both 5-fold and 10-fold splits, where
authors only used 3-fold cross-validation in their experiments.
The results for 3-fold, 5-fold and 10-fold for all four drugs have
been shown in Table 3. While performing baseline experiments
with new cross-validation settings, we observed the best results
with different splits, such as Bortezomib with 10-fold, and Cis-
platin and Docetaxel with 5-fold. After that, we benchmarked the
original experiments with fine-tuned models, the details of the
hyperparameters are given in Supplementary Table S1. Table 3
shows the average AUROC and ARP results for 15 epochs. We
observed that the results with 5-fold and 10-fold cross-validation
are better than baseline 3-fold cross-validation, even for the base-
line model settings. It suggested that further better performance
can be achieved with new cross-validation settings and changing
the methodology.

For scJoint benchmarking experiments, we performed experi-
ments for all three datasets, including 10xGenomics data, Mouse
Primary Motor Cortex Data and CITE-seq and ASAP-seq PBMC
datasets. The instruction for downloading and preparing datasets
are given on tutorial GitHubpage of this paper. The results of
scJoint benchmarking experiments have been shown in Table 4,
where we have shown two experiments (baseline and fine-tuned)
for each database. The details of the training configuration for
each database are presented in Supplementary Table S2. For each

database, the number of input and class size was set according
to genes/proteins and cell types, such as common genes for input
and cell types for classes. For 10x Genomics data, the input size
was set 15463 (scRNA-seq and scATAC-seq common genes) and
class size was set to 11 (cell types in scRNA_seq data), while for
Mouse Primary Motor Cortex Data, the input size was 18 603 with
21 classes (RNA-seq data). In the same way, the input size for
CITE-seq and ASAP-seq was set to 17 668 (17 441 genes and 227
proteins) with seven number of classes. We performed multiple
experiments using different hyperparameter values, as shown in
Supplementary Table S2; furthermore, the results for predicted
cell types for the mouse primary motor cortex database using
RNA-seq data have been shown in Supplementary Figure S3 (tSNE
visualization) and S4 (UMAP visualization).

To evaluate the BERMUDA performance, we benchmarked the
original experiments with the fine-tuned model, where we per-
formed further experiments with different model architectures
and hyperparameters settings. We performed experiments for
the Human Pancreas dataset and PBMC dataset, as shown in
Table 5. The authors used two types of model architectures in the
baseline model, Encoder20 and Encoder2. Encoder20 has hidden
units 200, 20, 200, and Encoder2 dimensions are 20, 2, 20. For
each experiment, we trained both models for 2000 epochs, the
run time for these experiments was 55 to 65 min. The reported
results for the autoencoder and uncorrected model for both archi-
tectures are shown in Table 5; it is observed that Encoder20 has
achieved better results for transfer loss in the fine-tuned model.
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Figure 4. Reviewed methods based on applied transfer learning paradigm

Table 3. AITL experiments for 3-fold, 5-fold and 10-fold cross-validation (authors used only 3-fold for their experiments) for all four
drugs Bortezomib, Cisplatin, Docetaxel and Paclitaxel with baseline model, best results in bold

Best Model for all drugs with 3-fold, 5-fold and 10-fold cross validation

Drug Model Cross-Validation Epochs Avg AUROC Avg APR

Bortezomib Baseline 3-fold 15 0.7323 0.7424
5-fold 0.7033 0.7272
10-fold 0.7376 0.76534

Cisplatin 3-fold 15 0.6048 0.8571
5-fold 0.6220 0.8549
10-fold 0.6070 0.8738

Docetaxel 3-fold 15 0.4929 0.6212
5-fold 0.5318 0.6734
10-fold 0.4416 0.6478

Paclitaxel 3-fold 15 0.5307 0.6120
5-fold 0.5156 0.5888
10-fold 0.4966 0.5937

Bortezomib Fine-tuned 3-fold 15 0.7210 0.7327
5-fold 0.6966 0.7156
10-fold 0.7327 0.7514

Cisplatin 3-fold 15 0.5567 0.8234
5-fold 0.6048 0.8442
10-fold 0.5781 0.8525

Docetaxel 3-fold 15 0.4989 0.6476
5-fold 0.5228 0.6669
10-fold 0.4482 0.6546

Paclitaxel 3-fold 15 0.5508 0.6084
5-fold 0.5465 0.6205
10-fold 0.5464 0.6182
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Table 4. scJoint experiments for three databases, including 10x Genomics, mouse primary motor cortex data and CITE-seq & ASAP-seq
PBMC data

Dataset DB Experiment Stage 1 Accuracy Stage 3 Accuracy

10x Genomics 10x Baseline 0.9125 0.9010
10x Genomics 10x Fine-tuned 0.9113 0.8992
Mouse Primary Motor Cortex Data MOp Baseline 0.8885 0.8976
Mouse Primary Motor Cortex Data MOp Fine-tuned 0.8937 0.8982
CITE-seq and ASAP-seq PBMC data db4_control Baseline 0.9225 0.9251
CITE-seq and ASAP-seq PBMC data db4_control Fine-tuned 0.9266 0.9275

Table 5. BERMUDA results for Human Pancreas and PBMC datasets for two autoencoder model: Encoder 2 and Encoder 200

For Human Pancrese Dataset

Method Model Model Setting Epochs Running time Divergence Score Silhoutee score

AE Encoder 20 Baseline 2000 1 hr 5 mins 0.615 0.648
Uncorrected 8.156 0.372
AE Encoder 20 Fine-tuned 2000 1 hr 5 mins 0.096 0.594
Uncorrected 8.168 0.373

For PBMC Dataset

Method Model Model Setting Epochs Running time Total loss Reconstrct loss Transfer loss
AE Encoder 20 Fine-tuned 2000 58.7 mins 0.6373 0.6240 0.02900
AE Encoder 20 Fine-tuned 1 2000 57.4 mins 0.8023 0.7748 0.0459
AE Encoder 2 Fine-tuned 2000 57.9 mins 0.8756 0.8718 0.0083
AE Encoder 2 Fine-tuned 1 2000 57.5 mins 0.9361 0.9285 0.0133

The most important in model training was similarity score Sthr,
a threshold to identify similar clusters among different batches.
We performed experiments mainly from 0.8 to 0.9 Sthr values
as authors tried a wide range of Sthr from 0.6 to 1.0 and found
best results at 0.8 to 0.9, provided in Supplementary material.
For Pancreas experiments, Baron and Muraro scRNA-seq Seurat
pre-processed datasets are used, while for PBMC experiments, we
used 10X PBMC 8k scRNA-seq dataset. We performed experiments
with both autoencoders with fine-tuned hyperparameters. We
reported the results for both Pancreas and PBMC for autoencoder
and uncorrected methods.

DISCUSSION
Transfer learning was widely demonstrated for its ability to gen-
erate feature representations for the prognosis, diagnosis and
treatment of human diseases. However, it is noteworthy that the
gap between published deep learning/classical machine learn-
ing and transfer learning methods in the last few years is sig-
nificant. In 2022, for example, 4834 papers were published on
combined deep learning and classical machine learning, while
only 53 papers were published on transfer learning, indicating
that transfer learning has not received adequate attention from
the research community. More research and attention are needed
to fully realize the potential of transfer learning in this field.
Transfer learning, similar to homology modeling in bioinformat-
ics, is always computationally tractable but may skip our neces-
sities in understanding the underlying mechanisms and molec-
ular processes behind decision-making. It has to be addressed
and complemented by other interpretation approaches such as
ablation studies, feature importance analysis, low-dimensional
data visualization and model-agnostic interpretation methods
(e.g. LIME and SHAP).

Challenges of data scarcity in health informatics
Transfer learning’s ultimate goal is to transfer the knowledge to
a target task with minimal or no amount of training data. With
the advent of HTS technologies, a vast amount of sequencing
data is available; however, the availability of annotated human
data for precision medicine remains a challenge due to various
ethical, financial and technical factors. Additionally, in the case
of rare diseases, the unavailability of sufficient data makes it
difficult to train machine learning models. The data scarcity issue
can be addressed by adapting different measures including fine-
tuning, using enough data from the same task from other domains
(domain adaptation), and careful evaluation of source and target
datasets leading to robust transfer learning model performance.

Challenges associated with the use of
pre-clinical data
Although transfer learning has shown great potential for high-
throughput data in clinical health informatics, it still faces mul-
tiple challenges, such as, but not limited to, genetic variations
between pre-clinical and clinical data, different experimental
settings and environmental variations. In light of those variations,
transfer learning models’ performance may fall short in terms
of accurate predictions. Those issues pose serious concerns to
transfer learning model training but we can try various cus-
tomized approaches to solve these problems, which may include
domain adaptation, batch normalization, fine-tuning and data
fusion with a wide range of environmental conditions. Addition-
ally, fine-tuning and domain adaptation could be required to
address the limited transferability of pre-trained transfer learn-
ing models. Recently, researchers presented a multi-task pre-
training and fine-tuning approach for limited phenotype data
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[69]. As most of the transfer learning studies relied upon pre-
clinical data for pre-training, it is also important to note the
ethical concerns related to pre-clinical data such as animal test-
ing. It may limit the scope of research, and thus the availability
of pre-clinical data. Therefore, cautions are needed to comply
with the ethical standards and guidelines in different jurisdiction
regions.

Transfer learning trends in clinical research
We observed a trend across different studies, where authors
used pre-clinical data (such as mouse, zebrafish and large data
compendium) in source domain tasks and clinical data (human)
in target domain tasks. The main reason for this trend is the
short-lived nature of animals, which enables in vivo experiments
resulting in enough amount of data. Many transfer learning meth-
ods focus on transferring source domain knowledge to human
data in the target domain, such as FIT [32], projectR and pro-
jectR_ICI [15, 16]. Furthermore, some methods use human control
data with mouse models to identify similarities in the source
domain and then train the model on these features to predict
responses in the target domain (human data). As transfer learning
continues to evolve, it holds the promise of addressing the data
inequality challenge in precision medicine and clinical research,
providing new insights into the diagnosis and treatment of human
diseases.

Despite the breakthrough results that deep transfer learning
has provided, transfer learning methods for gene expression anal-
ysis have not been explored at their full potential. There are
relatively few studies compared with machine learning and deep
learning methods, as shown in Figure 1. Nevertheless, transfer
learning offers a promising avenue for the future of biomedical
research and precision medicine, particularly in addressing the
ethical and data scarcity issues associated with in vivo experi-
ments for human. Similar to other deep learning model training,
transfer learning models may also suffer from overfitting and
generalization problems. One of the possible solutions in the
case of high-throughput data is to integrate a large compendium
of dataset for model training as in MultiPLIER [24]. It is also
important to note that, because of ethical concerns, pre-clinical
data may not always be readily available for the pre-training of
transfer learning models.

FUTURE DIRECTIONS
Transfer learning can be a valuable tool in translational medicine
in case of limited in vivo human data for clinical decision-making.
By leveraging knowledge gained from related diseases or condi-
tions, pre-clinical models and in vitro experiments, researchers
can make informed predictions about human health outcomes,
even when there are limited human data available. One promising
area of future research is the development of more advanced
transfer learning algorithms that can handle complex and diverse
data types, such as multimodal data. With the rise of big data in
healthcare, there is a growing need for transfer learning methods
that can effectively integrate and learn from various data sources,
such as genomics, imaging, electronic health records and patient-
reported outcomes. Integration of multimodal data is a critical
task to transfer knowledge across modalities and it provides a
comprehensive understanding of the underlying mechanism of
disease development.

Moreover, transfer learning could also be used to improve the
interpretability and transparency of machine learning models in

clinical research and health informatics. By leveraging knowledge
from related domains or pre-trained models, transfer learning
can help extract more meaningful and explainable features from
the data, which could enhance the trust and acceptance of these
models by clinicians and patients. Furthermore, the reviewed
studies may provide a starting point for the future development
of transfer learning methods in biomedical research and health
informatics.

Key Points

• In bioinformatics, particularly with in vivo (human)
experiments, obtaining sufficient data can be challeng-
ing due to ethical, financial and other factors.

• Transfer learning can enhance precision medicine by
utilizing pre-clinical data (such as mouse or zebrafish
data) in clinical decision-making.

• This comprehensive review sheds new light on the inte-
gration of transfer learning into clinical practices and
precision medicine.

• This review also covered benchmarking of transfer
learning methods and analysis of selected datasets.
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