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Abstract. The current rise in the amount of data generated has necessitated the use of machine learning in the drug discovery
process to increase productivity. It is therefore important to predict molecular compounds which are biologically active
and capable of drug-target interaction. Various machine learning methods have been used in predicting bioactive molecular
compounds in order to deal with the large volume of data being generated. This study investigates the Majority Voting
ensemble method using different combinations of 5 commonly-used machine learning algorithms, including Support Vector
Machine, Decision Tree, Naı̈ve Bayes, k-Nearest Neighbor, and Random Forest on three chemical datasets DS1, DS2, and
DS3 which consist of structurally heterogeneous and homogeneous molecules and are commonly used in other studies. The
results show that Majority Voting has a better performance, based on all the evaluation metrics used, compared to each of the
machine learning algorithms as individual classifiers. It also shows the Majority Voting ensemble method as effective in the
prediction of both heterogeneous and homogeneous bioactive molecular compounds, using statistical evaluation.
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1. Introduction

Drug discovery is an aspect of chemoinformat-
ics whose importance cannot be over-emphasized.
Chemoinformatics has become recognized as a dis-
tinct field over the years [8]. It is also known
ascheminformatics, chembioinformatics, or chem-
ical informatics [3]. It encompasses aspects like
the Quantitative Structure Activity Relationship
(QSAR), Quantitative Structure Property Relation-
ship (QSPR), lead optimization, and drug target
discovery, and in recent times it has been used with
the aim of predicting the properties of biological
molecules from their structural similarity [18]. In
fact, it has been suggested that analysing and predict-
ing bioactive molecules is the most popular task of
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chemoinformatics [7]. Chemoinformatics is the mix-
ing of those information resources to transform data
into information and information into knowledge for
the intended purpose of making better decisions faster
in the area of drug lead identification and organiza-
tion” [9].

Various known and unknown human diseases keep
springing up frequently and to combat these new,
more effort is put into the discovery of drugs effi-
cient enough to tackle the disease. Pharmaceutical
companies spend a great deal of time and resources
in producing a new drug and after production, but if it
does not meet the target requirement or tackle the dis-
ease for which it was produced, the drug will be called
off the market. According to [37], it cost about $1.8
billion to bring a New Molecular Entity (NME) to the
market after spending over $50 billion on its discov-
ery. Some of these NMEs end up not being endorsed
by the US Food and Drug Administration (FDA),
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and results in wasted effort, time, and resources. It
is therefore essential to take the necessary steps in
drug discovery. One of these necessary steps is the
identification and prediction of biologically active
molecular compounds from diverse chemical com-
pounds to detect a drug-target relationship.

Bioactive compounds are compounds which have
an effect on living organism, tissues, or cells. These
compounds can be found in both plant and animal
products or can be produced synthetically. They are
very important in reducing deteriorative processes
and degenerative disease. It is therefore essential to
preserve the beneficial characteristics of these com-
pounds. Bioactive molecules are also important in
drug discovery. It is therefore important to iden-
tify and predict the molecular compounds which are
highly bioactive and can thus assist in drug-target
interaction. The bioactivity of a molecular com-
pound and the property of the activity are known
as endogenous and exogenous features respectively
[28]. Although various forms of research have been
carried out and computational approaches have been
developed for the prediction of biologically active
compounds, the performance of each approach used
in the prediction varies due to the variety of meth-
ods and datasets used; thus, there is aquest for new
approaches to replace the existing methods in use,
which can predict bioactive molecular compounds
with high performance. Hence, this work aims to
obtain a better performance using voting based meth-
ods in the bid to avoid the frustration that comes with
wasted effort and resources in drug discovery.

2. Methods

2.1. Machine learning methods

The process of drug discovery takes a long time
and effort, from the mapping of the target disease to
the development of a drug which has the capability
to handle it [22, 31]. Compounds are being screened
in a search for molecules with a high level of hits.
High Throughput Screening (HTS) is a method which
has been used over the years by trying different pro-
cess to reach a solution. This process is known as the
trial and error method [38]. A remarkable develop-
ment from this trial and error method is the process
known as Virtual Screening (VS). Virtual screening
is an improvement from traditional approaches such
as High Throughput Screening to the use of machine
learning methods due to the increasing size of data

being generated by the chemical field and need proper
computation [6].

It has been proven that machine learning, because
of its high computational ability, has the inherent
capability to make predictive analyses [48]. There has
been a resurgent interest in machine learning which
has increased the popularity of data mining for drug
discovery [19]. The existing data are mainly consid-
ered as big data, since they possess the characteristics
of volume, variety, velocity, and veracity, and this has
made machine learning an important way to process
these data [49]. The machine learning platform has
been able to create cheaper and more powerful com-
putational processing with ease, while giving room
for affordable storage capacity for the voluminous
data [5]. This makes it is possible and easy to pro-
duce models automatically and within a target time,
which will be able to analyse huge, and, more com-
plex data while delivering the results faster and more
accurately, even on a very large scale [23].

Various machine learning algorithms have been
used in predictive analysis both in chemoinformat-
ics and outside the field. One of these algorithms
is Support Vector Machine which is widely used
in classification. It was introduced by [14] and is a
supervised learning method used for classification
and regression [50]. Its main concept is maximized
marginalization and kernel function for non-linearly
separable classes. It is also robust to accommodate
high dimensional data. A review by [40] showed that
Support Vector Machine performs better than most of
the investigated classifiers, and the performance can
be improved by adjusting its parameters, even though
more work still needs to be done on it. Radial Basis
Function Network (RBFN) is commonly used as ker-
nel in SVM [33, 40]. SVM can be used as a filter
between drug and non-drug compounds in the early
stage of drug discovery [33], even though real life
data for such scenarios might be unbalanced. Support
Vector Machine can be optimized to handle parame-
ter optimization and feature selection [50]. In an area
similar to chemoinformatics, SVM was also used in
screening of drugs for hepatocellular carcinoma [45],
where the chemicals to be predicted were accurately
identified with SVM.

Another classifier frequently used is k-Nearest
Neighbour (k-NN). k-NN is a non-parametric lazy
algorithm, which does not make generalizations
based on the training data points. It has little or no
training phase, which influences the decision to con-
sider it as a lazy algorithm, but this makes the training
phase fast. k-NN makes predictions based on the
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nearest training example in the feature space and it
can also be used for regression [35]. It is simple but
smart. k-NN can be used to model regression between
bioactivity and molecular descriptors using manifold
ranking [41]. Exploitation of similarity in structure
helps in achieving a good predictive performance. It
can be used in combination with docking-based inter-
molecular analysis to discover new inhibitors [29].
k-NN calculates the distance between each training
set and test set in the dataset and gives the k closest
sets. The time complexity is linear and it is guaran-
teed to find the needed and exact k nearest neighbours
[16]. Other areas apart from chemoinformatics where
k-NN has been utilized include classification of heart
disease [15] and detection of Parkinson’s disease
using fuzzy k-NN [11].

Naı̈ve Bayes (NB), based on Bayes’ theorem, is
a classifier which was specifically introduced for
text retrieval [47] and is also another machine learn-
ing algorithm which has gained widespread use in
chemoinformatics. It is a highly scalable classifier
and it requires a number of measures which are lin-
ear to the number of attributes (features/variables) in
a learning problem. Naı̈ve Bayesian classifiers are
frequently used in chemoinformatics either in com-
bination with another classifier or compared with
other classifiers. It has been generally used in predict-
ing biological properties rather than physicochemical
properties. In predicting the toxicity of a compound
[46], Naı̈ve Bayes classifier performed better than
other classifiers which it was examined against. Naı̈ve
Bayes has also been used for predicting phospholipi-
dosis mechanism [36]. The size and diversity of the
class of a dataset can have an effect on the predic-
tive ability of the model as shown by [34] where the
developed method had better performance compared
to Naı̈ve Bayes using the same dataset due to the size
and diversity of the class. Naı̈ve Bayesian classifiers
can also be used for regression, even though this case
is rarely seen nor implemented in chemoinformat-
ics [17].

The Decision Tree is commonly used for classifi-
cation. Output values of targets are predicted using
the various input attributes of each instance. As the
name implies, it is a tree depicted as an inverted
tree with the roots at the top while the leaves are
below. The root is the most essential attribute and
it divides further into branches which are also fur-
ther divided into branches until it reaches the leaf.
The leaf is a node and cannot be further divided,
and the nodes from the branches are known as inter-
nal nodes. Each leaf node is assigned with a target

property, and the internal nodes are assigned with a
molecular descriptor which checks if an instance is
satisfying a condition before branching it out, based
on its characteristics. The decision tree is constructed
from class-labelled training tuples [35]. It is basically
of two types: classification, which predicts the class
an item of data belongs to, and regression, where a
real number can be predicted. This is mainly referred
to as a Classification and Regression Tree (CART).
A decision tree can be pruned, either pre-pruned
or post-pruned, to avoid overfitting. It is used in
chemoinformatics for the identification of substruc-
tures that distinguish activity from nonactivity in a
given chemical compound library [32], and also for
classification of chemical compounds into drugs and
non-drugs [39]. Apart from chemoinformatics, it has
also been used in cancer classification [12] and also
fault diagnosis [30]. The Decision Tree has proven
to be an effective classifier in all areas of application
although it works best with categorical data.

Random Forest is a classifier which consist of
ensembles of Classification and Regression Trees
(CART). It is an ensemble of multiple decision trees
where a bootstrap sample of the original data is uti-
lized for growing each tree. However, the trees in ran-
dom forest are not pruned, unlike decision tree, where
there is a possibility of applying pre-pruning or post-
pruning [27]. Two techniques, bagging and random
feature selection are used by Random Forest, where
majority vote is also implemented to make predic-
tions. It uses weak learners to make predictions [42].
Weak learners are predictors with low bias and high
variance, which are essential for good accuracy. This
can be achieved by growing a tree to its maximum
depth without pruning. According to [26], Random
Forest is constructed using the following process:

i. Draw ntree bootstrap samples from the original
data. ntree here represents the number of ensem-
ble trees;

ii. Grow an unpruned CART for all the bootstrap
samples, and randomly select mtry variables at
each node of the tree for splitting. mtry here can
be a positive integer;

iii. Make prediction using aggregation of informa-
tion from the ntree using majority vote;

iv. Determine the error rate using data outside the
bootstrap sample.

Random Forest has been effectively used for clas-
sification and prediction in chemoinformatics and it
has shown some superiority when compared to other
classifiers [25, 43] and also great ability to deal with
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class imbalance problems. It is a fast classifier and
rarely predicts wrongly.

Each machine learning algorithm has shown good
performance in various situations where it has been
used, depending on the type of dataset or its dimen-
sionality. Despite this, there is no approved standard
for predicting bioactive molecular compounds, since
no method can be said to be superior to the other. If
each method is compared based on the performance,
time and, computational cost, it can be easily con-
cluded that no method can claim to be superior to the
other [35]. It is however of great importance that high
performance be obtained from these methods when
predicting.

2.2. Voting based methods

Although single classifiers have been able to per-
form well at predicting, there is still the quest to
improve the performance of models which are used
for prediction, especially in the case of predicting
bioactive molecules, due to their importance in drug
discovery and the result of their neglect. Analyses
by various researchers have shown that the combina-
tion of two or more classifiers might result in better
performance than that of single classifiers. In the
classification of a large dataset which contains more
than 24,700 compounds whose Cytochrome P450
(CYP450) are known and five unique CYP isoforms:
1A2, 2C9, 2C19, 2D6, and 3A4, [13] used the com-
bination of different classifiers which were combined
by Back Propagation Artificial Neural Network (BP-
ANN) and validation using 5-fold cross-validation
and reported that the performance derived from the
combined classifiers superseded that of the single
classifiers. Bagging, Boosting, Stacking, and Voting
are popular ensemble methods which can be used to
improve prediction performance of a model. Extreme
Gradient Boosting (Xgboost) [6], which is a variant
of the boosting ensemble and an ensemble of Classifi-
cation and Regression Trees (CART), was used in an
experimental prediction of bioactive molecules, using
seven different datasets; when compared against Ran-
dom Forest, Lib Support Vector Machine (LibSVM),
Radial Basis Function Network (RBFN), and Naı̈ve
Bayes, it had the best prediction accuracy overall.

Various explorations of ensemble methods have
been made in chemoinformatics, but the voting-based
ensemble which has been used in other areas has not
yet been tapped into in this field. The voting-based
method is an ensemble which consists of base clas-
sifiers and works to minimize misclassification. It

improves the overall prediction based on the predic-
tion of the base classifiers. It uses a combination rule
on the prediction of the base classifiers. These rules
are the product of probability, average of probability,
majority voting, maximum probability and minimum
probability, and they can either be weighted or not
[10]. The voting-based method is effective in han-
dling incomplete data without making assumptions
about missing values. The voting method was used by
[44] in Extreme Learning Machine (ELM) to handle
incomplete data. ELMs are efficient learning algo-
rithms for single-hidden layer feedforward neural
network (SLFN). It was discovered that ELM cannot
handle incomplete data, which are mostly common in
data gathered from real life applications. The voting-
based extreme learning machine uses the training set
data to determine how important each item of data
is, and trains using the ELM. Using weighted major-
ity voting in predicting, the recorded performance is
better than that of single classifiers. It also improves
the computational efficiency of the neural network
ensemble.

Moreover, in implementing voting ensemble
methods in bioinformatics, [20] pointed out that par-
titioning of data during single voting is important
to the detection of mislabelled data, and therefore
introduced multiple voting, which consists of sev-
eral single votes different from each other because
of the random partitioning combinedwith majority
voting to provide a solution to the neglect of data
partitioning while classifying. Multiple voting is able
to reduce the problem of dependency of mislabelled
data on data partitioning. Since multiple voting is a
conglomeration of single votes, multiple voting can
be used on single voting to check the unreliability
of single voting. The introduction of feature con-
struction to the voting-based method made it more
effective in addressing the analysis of financial dis-
tress in the real world and predicting the probability
of a bank being involved in financial distress [21].
The method uses indecisive rules to construct good
rules and make decisions. The performance of the
algorithm was better than that of the other algorithms
compared with it.

3. Experimental design

3.1. Datasets

The three datasets DS1, DS2 and DS3 used in
the implementation of this research are found in the



O.O. Petinrin and F. Saeed / Bioactive molecule prediction using majority voting-based ensemble method 387

Table 1
Activity Class for Dataset DS1

Activity Activity Class Active Pairwise Similarity
Index Molecules (Mean)

31420 Renin inhibitors 1130 0.573
71523 HIV protease inhibitors 750 0.446
37110 Thrombin inhibitors 803 0.419
31432 Angiotensin II AT1 antagonists 943 0.403
42731 Substance P antagonists 1246 0.339
06233 5HT3 antagonists 752 0.351
06245 5HT reuptake inhibitors 359 0.345
07701 D2 antagonists 395 0.345
06235 5HT1A agonists 827 0.343
78374 Protein kinase C inhibitors 453 0.323
78331 Cyclooxygenase inhibitors 636 0.268

Table 2
Activity Class for Dataset DS2

Activity Activity Class Active Pairwise Similarity
Index Molecules (Mean)

07707 Adenosine (A1) agonists 207 0.424
07708 Adenosine (A2) agonists 156 0.484
31420 Renin inhibitors 1130 0.584
42710 Monocyclic �-lactams 111 0.596
64100 Cephalosporins 1301 0.512
64200 Carbacephems 158 0.503
64220 Carbapenems 1051 0.414
64300 Penicillin 126 0.444
65000 Antibiotic, macrolide 388 0.673
75755 Vitamin D analogous 455 0.569

Table 3
Activity Class for Dataset DS3

Activity Activity Class Active Pairwise Similarity
Index Molecules (Mean)

09249 Muscarinic (M1) agonists 900 0.257
12455 NMDA receptor antagonists 1400 0.311
12464 Nitric oxide synthase inhibitors 505 0.237
31281 Dopamine �-hydroxylase inhibitors 106 0.324
43210 Aldose reductase inhibitors 957 0.37
71522 Reverse transcriptase inhibitors 700 0.311
75721 Aromatase inhibitors 636 0.318
78331 Cyclooxygenase inhibitors 636 0.382
78348 Phospholipase A2 inhibitors 617 0.291
78351 Lipoxygenase inhibitors 2111 0.365

MDL Drug Data Report (MDDR) database and are
already converted to Pipeline Pilot’s ECFC 4 fin-
gerprint and folded into 1024 elements fingerprints.
They are commonly used datasets and have been
used for Ligand-based Virtual Screening (LBVS)
[2, 4, 24], and bioactive molecule prediction [1, 6].
The prediction was made based on the activity
of the biological molecules. DS1 contains 8294
bioactive molecules and 11 classes, which comprise
both structurally heterogeneous and homogeneous
molecules. DS2 and DS3 contain 5083 and 8569
bioactive molecules respectively, with 10 classes of

homogeneous molecules for DS2 and 10 classes of
heterogeneous molecules for DS3. Tables 1, 2, and 3
show the activity class of the molecules, diversity
of the class, number of molecules attributed to each
class, and the average pairwise Tanimoto similarity
index of the molecule pair of the class for datasets
DS1, DS2, and DS3, respectively.

3.2. Voting-based mechanism

Five separate classifiers which are commonly used
for bioactivity prediction were used as the base
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Fig. 1. Voting Mechanism.

classifiers and combined differently to find the best
combination. These classifiers first make predic-
tions differently on the datasets and the predictions
are validated with 10-fold cross validation. Major-
ity voting gives the overall prediction based on the
prediction of the base classifiers. For each instance
in the dataset, majority voting assigns the instance
to the class where the majority of the base classi-
fiers classify it. This implementation was carried out
using WEKA software. It should be noted that if
more half of the base classifiers classify incorrectly
for an instance, the overall prediction for major-
ity voting will also be incorrect. It is important to
select classifiers which have uncorrelated predic-
tions. A good rule of thumb requires the selection
of classifiers from tree, Bayesian, function, and lazy
classifiers, in order to have classifiers with varied pre-
dictions. The process of majority voting is shown
in Fig. 1.

If the final computed class probability of an
instance is given by LCi (X), the final prediction of
the ensemble of classifiers is given as:

H (X) = argi=1...n max (LCi (X)) (1)

4. Results and discussion

The classifiers were evaluated based on six differ-
ent evaluation metrics. These metrics are generally
used in evaluating the performance of a classifier.
They are accuracy, sensitivity, specificity, precision,
recall, and f-measure. Accuracy of a classifier is also
known as the overall recognition rate of the classifier.
It refers to the predictive abilities of the classifier. It is
the percentage ratio of correctly classified instances.

Sensitivity can be referred to as true positive recogni-
tion rate. It is the percentage ratio of positive instances
which are correctly classified as positive or the mea-
sure of positives correctly identified as such. It depicts
how much the classifier avoids false negatives. Speci-
ficity is known as true negative recognition rate. It is
the percentage ratio of negative instances which are
correctly identified as negative or the total measure of
negatives correctly classified as such. It depicts how
much the classifier avoids false positives. Precision
is a measure of exactness. It shows the percentage
ratio of instances which are classified as positive and
are actually positive. It is based on relevance. That is,
how relevant are the instances classified as being pos-
itive? Recall is a measure of exactness. It shows how
many of the actual positives are predicted to be such.
Recall and Precision are both combined into a single
metric known as the F-measure. The F-measure is the
harmonic mean of both recall and precision and the
approximate average of both precision and recall. The
F-measure is also known as F1, since recall and pre-
cision are evenly weighted. It can be a bias evaluation
metric.

The performance of a classifier or built model can-
not be determined based on the training data but on
the test data, which have class-labelled instances that
were not part of the training data. The 10-fold cross
validation was used in this instance to validate the
performance of the classifiers. The effectiveness of
an evaluation metric is shown when the distribution
of the class is relatively balanced. The general for-
mula of the evaluation metrics of a classifier from the
confusion matrix is given as:

Accuracy = TP + TN

P + N
(2)
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Sensitivity = Recall = TP

TP + FN
= TP

P
(3)

Specificity = TN

N
(4)

Precision = TP

TP + FP
(5)

Fmeasure = 2 × recall × precision

recall + precision
(6)

where, TP are the true positives, TN are the true neg-
atives, P are the positives, N are the negatives, FP are
the false positives, and FN are the false negatives. The
base classifiers were further combined in six differ-
ent ways. The accuracy evaluation metric was chosen
to determine the best combination. The combination
with the best accuracy was hence chosen to compare
with the base classifiers. The accuracy of the combi-
nations with majority voting for datasets DS1, DS2
and DS3 is shown in Tables 4, 5, and 6 respectively.

Table 4
Accuracy of Majority Voting with Different Base

Classifier Combination for Dataset DS1

Majority Voting Combination Accuracy (%)

SVM, DT, NB, k-NN, RF 96.9134
DT, NB, k-NN, RF 95.8765
SVM, NB, k-NN, RF 97.0943
SVM, DT, k-NN, RF 97.1546
SVM, DT, NB, RF 95.5872
SVM, DT, NB, k-NN 95.6716

Table 5
Accuracy of Majority Voting with Different Base

Classifier Combination for Dataset DS2

Majority Voting Combination Accuracy (%)

SVM, DT, NB, k-NN, RF 98.3081
DT, NB, k-NN, RF 98.072
SVM, NB, k-NN, RF 98.1114
SVM, DT, k-NN, RF 98.19
SVM, DT, NB, RF 98.131
SVM, DT, NB, k-NN 98.0917

Table 6
Accuracy of Majority Voting with Different Base

Classifier Combination for Dataset DS3

Majority Voting Combination Accuracy (%)

SVM, DT, NB, k-NN, RF 95.5065
DT, NB, k-NN, RF 94.4795
SVM, NB, k-NN, RF 95.6699
SVM, DT, k-NN, RF 95.6816
SVM, DT, NB, RF 93.8725
SVM, DT, NB, k-NN 94.1527

Tables 4 and 6 show that the combination of
Support Vector Machine, Decision Tree, k-Nearest
Neighbour, and Random Forest as the base classifiers
gave the best accuracy of 97.1546% and 95.6816%
for datasets DS1 and DS3 respectively, for the major-
ity voting. In Table 5, which shows the results of
dataset DS2, the combination of all the base classi-
fiers, Support Vector Machine, Decision Tree, Naı̈ve
Bayes, k-Nearest Neighbour, and Random Forest
gives the best accuracy of 98.3081% compared to all
other combinations. Since majority voting makes the
overall prediction based on the prediction of the base
classifiers, the presence of a non-suitable individual
result will affect its accuracy. Therefore, when build-
ing a model with the majority voting method, it is
essential to choose base classifiers whose accuracy as
individual classifiers is good, so that majority voting
makes the overall accuracy better. The comparison
between the selected individual/base classifiers and
the majority voting combination with best accuracy
is shown in Tables 7, 8, and 9, for datasets DS1, DS2,
and DS3 respectively.

Majority Voting had the best performance in accu-
racy, sensitivity, precision, recall, and f-measure in
datasets DS1 and DS2, as shown in Tables 7 and 8,
but in dataset DS3, as shown in Table 9, k-Nearest
Neighbor had better specificity compared to Major-
ity Voting. It is also noted that Naı̈ve Bayes had low
performance generally in all the datasets and com-
binations of base classifiers which included Naı̈ve
Bayes also had low performance. This shows the
importance of selecting good base classifiers to aid
better prediction with Majority Voting.

A statistical method, Kendall’s Coefficient of Con-
cordance, also known as Kendall’s W test, was used
to rank the classifiers using the evaluation metrics as
the raters and the results for the three datasets are
shown in Table 10. Kendall’s W gives the measure-
ment of agreement, which shows how well the raters
agreed on the ranking of the objects of considera-
tion. Kendall’s W ranges from 0 to 1. When W is 0,
it means there was no agreement between the raters,
while 1 means there was perfect agreement between
the raters.

The test ranked Majority Voting highest in all the
datasets examined. Moreover, the W, which signi-
fies the level of agreement between the raters, is
between 0.953 and 0.984 for the three datasets. Thus,
apart from the evaluation metrics used, statistically,
Majority Voting also performed better than the other
classifiers with a high level of W, which signifies an
almost perfect agreement between the raters.
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Table 7
Performance Comparison Between Individual Classifiers and Majority Voting for DS1

Classifiers Accuracy (%) Sensitivity Specificity Precision Recall F-Measure

Majority Voting (SVM, DT, k-NN, RF) 97.1546 0.972 0.997 0.971 0.972 0.971
Random Forest 96.9375 0.969 0.997 0.969 0.969 0.969
K-Nearest Neighbor 96.7929 0.968 0.997 0.968 0.968 0.968
Support Vector Machine 96.0694 0.961 0.996 0.961 0.961 0.961
Decision Tree 87.714 0.877 0.987 0.877 0.877 0.877
Naı̈ve Bayes 77.6585 0.777 0.978 0.782 0.777 0.777

Table 8
Performance Comparison Between Individual Classifiers and Majority Voting for DS2

Classifiers Accuracy (%) Sensitivity Specificity Precision Recall F-Measure

Majority Voting (SVM, DT, k-NN, RF) 98.3081 0.983 0.996 0.983 0.983 0.983
Random Forest 98.1704 0.982 0.996 0.981 0.982 0.981
K-Nearest Neighbor 97.8163 0.978 0.996 0.978 0.978 0.978
Support Vector Machine 97.8359 0.978 0.996 0.978 0.978 0.978
Decision Tree 97.1867 0.972 0.994 0.971 0.972 0.971
Naı̈ve Bayes 94.7669 0.948 0.994 0.954 0.948 0.949

Table 9
Performance Comparison Between Individual Classifiers and Majority Voting for DS3

Classifiers Accuracy (%) Sensitivity Specificity Precision Recall F-Measure

Majority Voting (SVM, DT, k-NN, RF) 95.6816 0.957 0.992 0.957 0.957 0.957
Random Forest 95.2264 0.952 0.99 0.953 0.952 0.952
K-Nearest Neighbor 95.5299 0.955 0.993 0.955 0.955 0.955
Support Vector Machine 93.4524 0.935 0.989 0.934 0.935 0.934
Decision Tree 87.2666 0.873 0.98 0.872 0.873 0.872
Naı̈ve Bayes 65.9197 0.659 0.958 0.697 0.659 0.668

Table 10
Ranking of Methods for datasets DS1, DS2, and DS3 with

Kendall’s W Test

Dataset Method Mean Average Kendall’s W

DS1 Majority Voting 5.83 0.984
Random Forest 5.00
k-Nearest Neighbor 4.17
Support Vector Machine 3.00
Decision Tree 2.00
Naı̈ve Bayes 1.00

DS2 Majority Voting 5.75 0.953
Random Forest 4.92
Support Vector Machine 3.75
k-Nearest Neighbor 3.58
Decision Tree 1.92
Naı̈ve Bayes 1.08

DS3 Majority Voting 5.83 0.984
k-Nearest Neighbor 5.17
Random Forest 4.00
Support Vector Machine 3.00
Decision Tree 2.00
Naı̈ve Bayes 1.00

5. Conclusion

Drug discovery is an important aspect of chemoin-
formatics and bioactive molecule prediction is an
integral step that needs to be undertaken to avoid

resource wastage. Machine learning algorithms are
introduced to handle the complex chemical data and
several algorithms have been used, even though none
can claim superiority over the other. Furthermore,
the combinations of more than one classifier or
an ensemble, have shown better accuracy than
single classifiers. This research has utilized majority
voting, which is frequently used in other areas but
hardly ever for prediction in chemoinformatics.
The results show that majority voting has better
accuracy compared to single classifiers, provided
the right base classifiers are chosen. The method is
also suitable in handling high-dimensional datasets
which are both homogeneous and heterogeneous.
It is therefore recommended as a suitable method
in drug discovery for bioactivity prediction, to
avoid wastage of resources and accommodate both
homogeneous and heterogeneous chemical datasets,
however diverse these might be.
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